Algèbre Exemples

Trouver les valeurs exclues (3x^2)/(x^2-3x-18)-(x+2)/(x-6)
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Soustrayez des deux côtés de l’équation.
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 6