Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Pour déterminer l’intervalle pour la première partie, déterminez où l’intérieur de la valeur absolue est non négatif.
Étape 1.2
Ajoutez aux deux côtés de l’inégalité.
Étape 1.3
Dans la partie où est non négatif, retirez la valeur absolue.
Étape 1.4
Pour déterminer l’intervalle pour la deuxième partie, déterminez où l’intérieur de la valeur absolue est négatif.
Étape 1.5
Ajoutez aux deux côtés de l’inégalité.
Étape 1.6
Dans la partie où est négatif, retirez la valeur absolue et multipliez par .
Étape 1.7
Écrivez comme fonction définie par morceaux.
Étape 1.8
Simplifiez .
Étape 1.8.1
Appliquez la propriété distributive.
Étape 1.8.2
Multipliez .
Étape 1.8.2.1
Multipliez par .
Étape 1.8.2.2
Multipliez par .
Étape 2
Étape 2.1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Étape 2.1.1
Ajoutez aux deux côtés de l’inégalité.
Étape 2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.1.3
Associez et .
Étape 2.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.1.5
Simplifiez le numérateur.
Étape 2.1.5.1
Multipliez par .
Étape 2.1.5.2
Additionnez et .
Étape 2.2
Déterminez l’intersection de et .
Étape 3
Étape 3.1
Résolvez pour .
Étape 3.1.1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Étape 3.1.1.1
Soustrayez des deux côtés de l’inégalité.
Étape 3.1.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.1.1.3
Associez et .
Étape 3.1.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.1.1.5
Simplifiez le numérateur.
Étape 3.1.1.5.1
Multipliez par .
Étape 3.1.1.5.2
Soustrayez de .
Étape 3.1.2
Divisez chaque terme dans par et simplifiez.
Étape 3.1.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 3.1.2.2
Simplifiez le côté gauche.
Étape 3.1.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.1.2.2.2
Divisez par .
Étape 3.1.2.3
Simplifiez le côté droit.
Étape 3.1.2.3.1
Déplacez le moins un du dénominateur de .
Étape 3.1.2.3.2
Réécrivez comme .
Étape 3.2
Déterminez l’intersection de et .
Étape 4
Déterminez l’union des solutions.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 6