Algèbre Exemples

Résoudre par substitution y=-2x^2-4x-1 y=2x+4
Étape 1
Éliminez les côtés égaux de chaque équation et associez.
Étape 2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Soustrayez des deux côtés de l’équation.
Étape 2.1.2
Soustrayez de .
Étape 2.2
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Soustrayez de .
Étape 2.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.1
Élevez à la puissance .
Étape 2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.2.1
Multipliez par .
Étape 2.5.1.2.2
Multipliez par .
Étape 2.5.1.3
Soustrayez de .
Étape 2.5.1.4
Réécrivez comme .
Étape 2.5.1.5
Réécrivez comme .
Étape 2.5.1.6
Réécrivez comme .
Étape 2.5.1.7
Réécrivez comme .
Étape 2.5.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.5.1.9
Déplacez à gauche de .
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Simplifiez .
Étape 2.5.4
Placez le signe moins devant la fraction.
Étape 2.6
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.1
Élevez à la puissance .
Étape 2.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Soustrayez de .
Étape 2.6.1.4
Réécrivez comme .
Étape 2.6.1.5
Réécrivez comme .
Étape 2.6.1.6
Réécrivez comme .
Étape 2.6.1.7
Réécrivez comme .
Étape 2.6.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.6.1.9
Déplacez à gauche de .
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Simplifiez .
Étape 2.6.4
Placez le signe moins devant la fraction.
Étape 2.6.5
Remplacez le par .
Étape 2.6.6
Divisez la fraction en deux fractions.
Étape 2.6.7
Appliquez la propriété distributive.
Étape 2.7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.1
Élevez à la puissance .
Étape 2.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Soustrayez de .
Étape 2.7.1.4
Réécrivez comme .
Étape 2.7.1.5
Réécrivez comme .
Étape 2.7.1.6
Réécrivez comme .
Étape 2.7.1.7
Réécrivez comme .
Étape 2.7.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.7.1.9
Déplacez à gauche de .
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Simplifiez .
Étape 2.7.4
Placez le signe moins devant la fraction.
Étape 2.7.5
Remplacez le par .
Étape 2.7.6
Divisez la fraction en deux fractions.
Étape 2.7.7
Placez le signe moins devant la fraction.
Étape 2.7.8
Appliquez la propriété distributive.
Étape 2.7.9
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.9.1
Multipliez par .
Étape 2.7.9.2
Multipliez par .
Étape 2.8
La réponse finale est la combinaison des deux solutions.
Étape 3
Évaluez quand .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par .
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Appliquez la propriété distributive.
Étape 3.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.2.2
Annulez le facteur commun.
Étape 3.2.1.2.3
Réécrivez l’expression.
Étape 3.2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.3.2
Annulez le facteur commun.
Étape 3.2.1.3.3
Réécrivez l’expression.
Étape 3.2.2
Additionnez et .
Étape 4
Évaluez quand .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez par .
Étape 4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Appliquez la propriété distributive.
Étape 4.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.2.1.2.2
Annulez le facteur commun.
Étape 4.2.1.2.3
Réécrivez l’expression.
Étape 4.2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.3.1
Annulez le facteur commun.
Étape 4.2.1.3.2
Réécrivez l’expression.
Étape 4.2.2
Additionnez et .
Étape 5
Indiquez toutes les solutions.
Étape 6