Algèbre Exemples

Resolva para x (x^2-9)(x^2+12x+36)=0
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez égal à .
Étape 2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Réécrivez comme .
Étape 2.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Réécrivez comme .
Étape 3.2.1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 3.2.1.3
Réécrivez le polynôme.
Étape 3.2.1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 3.2.2
Définissez le égal à .
Étape 3.2.3
Soustrayez des deux côtés de l’équation.
Étape 4
La solution finale est l’ensemble des valeurs qui rendent vraie.