Algèbre Exemples

Simplifier ((x^2-9)/(x^2-25))÷((x^2-8x+15)/(x^2+7x+10))
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Étape 2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez comme .
Étape 3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 4
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.2
Écrivez la forme factorisée avec ces entiers.
Étape 5
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 5.2
Écrivez la forme factorisée avec ces entiers.
Étape 6
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Factorisez à partir de .
Étape 6.1.2
Factorisez à partir de .
Étape 6.1.3
Annulez le facteur commun.
Étape 6.1.4
Réécrivez l’expression.
Étape 6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Annulez le facteur commun.
Étape 6.2.3
Réécrivez l’expression.
Étape 6.3
Multipliez par .
Étape 7
Élevez à la puissance .
Étape 8
Élevez à la puissance .
Étape 9
Utilisez la règle de puissance pour associer des exposants.
Étape 10
Additionnez et .