Algèbre Exemples

Simplifier ((x^2-10x+24)/(x^2+x-42)*(x^2-49)/(x^2-11x+28))÷((3x^2-147)/(x^2-49))
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.2
Écrivez la forme factorisée avec ces entiers.
Étape 3
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.2
Écrivez la forme factorisée avec ces entiers.
Étape 4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 5
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 5.2
Écrivez la forme factorisée avec ces entiers.
Étape 6
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Factorisez à partir de .
Étape 6.1.2
Factorisez à partir de .
Étape 6.1.3
Annulez le facteur commun.
Étape 6.1.4
Réécrivez l’expression.
Étape 6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Annulez le facteur commun.
Étape 6.2.3
Réécrivez l’expression.
Étape 6.3
Multipliez par .
Étape 7
Annulez le facteur commun.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Annulez le facteur commun.
Étape 7.1.2
Réécrivez l’expression.
Étape 7.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun.
Étape 7.2.2
Réécrivez l’expression.
Étape 8
Multipliez par .
Étape 9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Réécrivez comme .
Étape 9.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 10
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Factorisez à partir de .
Étape 10.1.2
Factorisez à partir de .
Étape 10.1.3
Factorisez à partir de .
Étape 10.2
Réécrivez comme .
Étape 10.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 11
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Annulez le facteur commun.
Étape 11.1.2
Réécrivez l’expression.
Étape 11.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Annulez le facteur commun.
Étape 11.2.2
Réécrivez l’expression.
Étape 12
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :