Algèbre Exemples

Identifier l''équation polaire x^2+(y-2)^2=4
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez comme .
Étape 3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Soustrayez de .
Étape 3.3.2
Additionnez et .
Étape 3.3.3
Appliquez la propriété distributive.
Étape 3.3.4
Multipliez par .
Étape 3.3.5
Additionnez et .
Étape 4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.3
La solution complète est le résultat des parties positive et négative de la solution.