Algèbre Exemples

Trouver le domaine de définition et l''ensemble d''arrivée y^2(x^2-4)=x+2
Étape 1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Annulez le facteur commun.
Étape 1.2.1.2
Divisez par .
Étape 1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Réécrivez comme .
Étape 1.3.2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Annulez le facteur commun.
Étape 1.3.3.2
Réécrivez l’expression.
Étape 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez comme .
Étape 3.2
Toute racine de est .
Étape 3.3
Multipliez par .
Étape 3.4
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Multipliez par .
Étape 3.4.2
Élevez à la puissance .
Étape 3.4.3
Élevez à la puissance .
Étape 3.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.5
Additionnez et .
Étape 3.4.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.6.1
Utilisez pour réécrire comme .
Étape 3.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.6.3
Associez et .
Étape 3.4.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.6.4.1
Annulez le facteur commun.
Étape 3.4.6.4.2
Réécrivez l’expression.
Étape 3.4.6.5
Simplifiez
Étape 4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 6
Ajoutez aux deux côtés de l’inégalité.
Étape 7
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 8
Ajoutez aux deux côtés de l’équation.
Étape 9
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 10
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 11
Déterminez le domaine et la plage.
Domaine :
Plage :
Étape 12