Algèbre Exemples

Identifier les zéros et leurs multiplicités f(x)=36x^4-12x^3+x^2
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Multipliez par .
Étape 2.1.1.4
Factorisez à partir de .
Étape 2.1.1.5
Factorisez à partir de .
Étape 2.1.2
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Réécrivez comme .
Étape 2.1.2.2
Réécrivez comme .
Étape 2.1.2.3
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 2.1.2.4
Réécrivez le polynôme.
Étape 2.1.2.5
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.3.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.1
Réécrivez comme .
Étape 2.3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.2.2.3
Plus ou moins est .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Définissez le égal à .
Étape 2.4.2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.2.2.1.2
Divisez par .
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie. La multiplicité d’une racine est le nombre de fois que la racine apparaît.
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
Étape 3