Algèbre Exemples

Convertir en coordonnées polaires. x^2+y^2=a^2
Étape 1
Comme , remplacez par .
Étape 2
Comme , remplacez par .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Simplifiez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Appliquez la règle de produit à .
Étape 3.2.1.2
Appliquez la règle de produit à .
Étape 3.2.2
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Factorisez à partir de .
Étape 3.2.2.3
Factorisez à partir de .
Étape 3.2.3
Réorganisez les termes.
Étape 3.2.4
Appliquez l’identité pythagoricienne.
Étape 3.2.5
Multipliez par .
Étape 3.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Soustrayez des deux côtés de l’équation.
Étape 3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.