Algèbre Exemples

Resolva a Inequação para x base logarithmique 3 de x+9<4
Étape 1
Convertissez l’inégalité en une égalité.
Étape 2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez l’équation comme .
Étape 2.2.2
Élevez à la puissance .
Étape 2.2.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.3.2
Soustrayez de .
Étape 3
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 3.2
Soustrayez des deux côtés de l’inégalité.
Étape 3.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 4
Utilisez chaque racine pour créer des intervalles de test.
Étape 5
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.1.2
Remplacez par dans l’inégalité d’origine.
Étape 5.1.3
Déterminez si l’inégalité est vraie.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
L’équation ne peut pas être résolue car elle est indéfinie.
Étape 5.1.3.2
Le côté gauche n’a pas de solution, ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Faux
Étape 5.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.2.2
Remplacez par dans l’inégalité d’origine.
Étape 5.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 5.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.3.2
Remplacez par dans l’inégalité d’origine.
Étape 5.3.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 5.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 6
La solution se compose de tous les intervalles vrais.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 8