Algèbre Exemples

Resolva para x racine cubique de 4x^2-4x=x
Étape 1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez pour réécrire comme .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.2.1
Annulez le facteur commun.
Étape 2.2.1.1.2.2
Réécrivez l’expression.
Étape 2.2.1.2
Simplifiez
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Remettez l’expression dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Déplacez .
Étape 3.2.1.1.2
Remettez dans l’ordre et .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.1.4
Factorisez à partir de .
Étape 3.2.1.5
Factorisez à partir de .
Étape 3.2.1.6
Factorisez à partir de .
Étape 3.2.2
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 3.2.2.3
Réécrivez le polynôme.
Étape 3.2.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à .
Étape 3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1
Définissez le égal à .
Étape 3.5.2.2
Ajoutez aux deux côtés de l’équation.
Étape 3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.