Algèbre Exemples

Resolva para x e^(sin(x))cos(x)=0
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez égal à .
Étape 2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
La valeur exacte de est .
Étape 3.2.3
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 3.2.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.1
Associez et .
Étape 3.2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.3.1
Multipliez par .
Étape 3.2.4.3.2
Soustrayez de .
Étape 3.2.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2.5.2
Remplacez par dans la formule pour la période.
Étape 3.2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.5.4
Divisez par .
Étape 3.2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 4
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 5
Consolidez les réponses.
, pour tout entier