Algèbre Exemples

Trouver toutes les solutions complexes base logarithmique x de x+6=2
Étape 1
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.3.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 2.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Soustrayez des deux côtés de l’équation.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Excluez les solutions qui ne rendent pas vrai.