Algèbre Exemples

Resolva para k racine carrée de 2k^2+17-x=0
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 3
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez pour réécrire comme .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.1.2
Simplifiez
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Placez le signe moins devant la fraction.
Étape 4.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Associez les numérateurs sur le dénominateur commun.
Étape 4.4.2
Réécrivez comme .
Étape 4.4.3
Multipliez par .
Étape 4.4.4
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.4.1
Multipliez par .
Étape 4.4.4.2
Élevez à la puissance .
Étape 4.4.4.3
Élevez à la puissance .
Étape 4.4.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 4.4.4.5
Additionnez et .
Étape 4.4.4.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.4.6.1
Utilisez pour réécrire comme .
Étape 4.4.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.4.4.6.3
Associez et .
Étape 4.4.4.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.4.6.4.1
Annulez le facteur commun.
Étape 4.4.4.6.4.2
Réécrivez l’expression.
Étape 4.4.4.6.5
Évaluez l’exposant.
Étape 4.4.5
Associez en utilisant la règle de produit pour les radicaux.
Étape 4.4.6
Remettez les facteurs dans l’ordre dans .
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5.3
La solution complète est le résultat des parties positive et négative de la solution.