Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Étape 1.2.1
Annulez le facteur commun de .
Étape 1.2.1.1
Annulez le facteur commun.
Étape 1.2.1.2
Divisez par .
Étape 1.3
Simplifiez le côté droit.
Étape 1.3.1
Annulez le facteur commun à et .
Étape 1.3.1.1
Factorisez à partir de .
Étape 1.3.1.2
Annulez les facteurs communs.
Étape 1.3.1.2.1
Factorisez à partir de .
Étape 1.3.1.2.2
Annulez le facteur commun.
Étape 1.3.1.2.3
Réécrivez l’expression.
Étape 1.3.2
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez .
Étape 2.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 2.2.1.1.1
Appliquez la règle de produit à .
Étape 2.2.1.1.2
Appliquez la règle de produit à .
Étape 2.2.1.1.3
Appliquez la règle de produit à .
Étape 2.2.1.2
Élevez à la puissance .
Étape 2.2.1.3
Multipliez par .
Étape 2.2.1.4
Élevez à la puissance .
Étape 2.2.1.5
Élevez à la puissance .
Étape 3
Étape 3.1
Multipliez les deux côtés par .
Étape 3.2
Simplifiez
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Annulez le facteur commun de .
Étape 3.2.1.1.1
Annulez le facteur commun.
Étape 3.2.1.1.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Multipliez.
Étape 3.2.2.1.2.1
Multipliez par .
Étape 3.2.2.1.2.2
Multipliez par .
Étape 3.3
Résolvez .
Étape 3.3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.1.2
Soustrayez de .
Étape 3.3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.3.2.1
Divisez chaque terme dans par .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Annulez le facteur commun de .
Étape 3.3.2.2.1.1
Annulez le facteur commun.
Étape 3.3.2.2.1.2
Divisez par .
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
Divisez par .
Étape 3.3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3.4
Simplifiez .
Étape 3.3.4.1
Réécrivez comme .
Étape 3.3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Annulez le facteur commun de .
Étape 4.2.1.1.1
Annulez le facteur commun.
Étape 4.2.1.1.2
Divisez par .
Étape 4.2.1.2
Multipliez par .
Étape 5
Étape 5.1
Remplacez toutes les occurrences de dans par .
Étape 5.2
Simplifiez le côté droit.
Étape 5.2.1
Simplifiez .
Étape 5.2.1.1
Annulez le facteur commun à et .
Étape 5.2.1.1.1
Factorisez à partir de .
Étape 5.2.1.1.2
Annulez les facteurs communs.
Étape 5.2.1.1.2.1
Factorisez à partir de .
Étape 5.2.1.1.2.2
Annulez le facteur commun.
Étape 5.2.1.1.2.3
Réécrivez l’expression.
Étape 5.2.1.1.2.4
Divisez par .
Étape 5.2.1.2
Multipliez .
Étape 5.2.1.2.1
Multipliez par .
Étape 5.2.1.2.2
Multipliez par .
Étape 6
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 8