Algèbre Exemples

Resolva a Inequação para x -2 racine cubique de x+4<12
Étape 1
To remove the radical on the left side of the inequality, cube both sides of the inequality.
Étape 2
Simplifiez chaque côté de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez pour réécrire comme .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Appliquez la règle de produit à .
Étape 2.2.1.2
Élevez à la puissance .
Étape 2.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.3.2.1
Annulez le facteur commun.
Étape 2.2.1.3.2.2
Réécrivez l’expression.
Étape 2.2.1.4
Simplifiez
Étape 2.2.1.5
Appliquez la propriété distributive.
Étape 2.2.1.6
Multipliez par .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Élevez à la puissance .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Ajoutez aux deux côtés de l’inégalité.
Étape 3.1.2
Additionnez et .
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Divisez par .
Étape 4
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 5