Entrer un problème...
Algèbre Exemples
Étape 1
Remplacez par .
Étape 2
Étape 2.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 2.1.1
Soustrayez des deux côtés de l’équation.
Étape 2.1.2
Soustrayez de .
Étape 2.2
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Soustrayez de .
Étape 2.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.5
Simplifiez
Étape 2.5.1
Simplifiez le numérateur.
Étape 2.5.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.5.1.2
Multipliez .
Étape 2.5.1.2.1
Multipliez par .
Étape 2.5.1.2.2
Multipliez par .
Étape 2.5.1.3
Soustrayez de .
Étape 2.5.1.4
Réécrivez comme .
Étape 2.5.1.5
Réécrivez comme .
Étape 2.5.1.6
Réécrivez comme .
Étape 2.5.2
Multipliez par .
Étape 2.6
Simplifiez l’expression pour résoudre la partie du .
Étape 2.6.1
Simplifiez le numérateur.
Étape 2.6.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.1.2
Multipliez .
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Soustrayez de .
Étape 2.6.1.4
Réécrivez comme .
Étape 2.6.1.5
Réécrivez comme .
Étape 2.6.1.6
Réécrivez comme .
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Remplacez le par .
Étape 2.6.4
Réécrivez comme .
Étape 2.6.5
Factorisez à partir de .
Étape 2.6.6
Factorisez à partir de .
Étape 2.6.7
Placez le signe moins devant la fraction.
Étape 2.7
Simplifiez l’expression pour résoudre la partie du .
Étape 2.7.1
Simplifiez le numérateur.
Étape 2.7.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.7.1.2
Multipliez .
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Soustrayez de .
Étape 2.7.1.4
Réécrivez comme .
Étape 2.7.1.5
Réécrivez comme .
Étape 2.7.1.6
Réécrivez comme .
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Remplacez le par .
Étape 2.7.4
Réécrivez comme .
Étape 2.7.5
Factorisez à partir de .
Étape 2.7.6
Factorisez à partir de .
Étape 2.7.7
Placez le signe moins devant la fraction.
Étape 2.8
La réponse finale est la combinaison des deux solutions.