Algèbre Exemples

Resolva para x 3x*(2x-1)-12*(2x-1)=0
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Appliquez la propriété distributive.
Étape 1.1.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.3
Multipliez par .
Étape 1.1.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1.1
Déplacez .
Étape 1.1.4.1.2
Multipliez par .
Étape 1.1.4.2
Multipliez par .
Étape 1.1.5
Appliquez la propriété distributive.
Étape 1.1.6
Multipliez par .
Étape 1.1.7
Multipliez par .
Étape 1.2
Soustrayez de .
Étape 2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Factorisez à partir de .
Étape 2.1.3
Factorisez à partir de .
Étape 2.1.4
Factorisez à partir de .
Étape 2.1.5
Factorisez à partir de .
Étape 2.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Factorisez à partir de .
Étape 2.2.1.1.2
Réécrivez comme plus
Étape 2.2.1.1.3
Appliquez la propriété distributive.
Étape 2.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.2.2
Supprimez les parenthèses inutiles.
Étape 3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.2.1.2
Divisez par .
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Ajoutez aux deux côtés de l’équation.
Étape 6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :