Algèbre Exemples

Resolva para x (2x-3)(5x+1)=2x+2/5
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez.
Étape 1.2
Simplifiez en ajoutant des zéros.
Étape 1.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Appliquez la propriété distributive.
Étape 1.4
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.4.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1
Déplacez .
Étape 1.4.1.2.2
Multipliez par .
Étape 1.4.1.3
Multipliez par .
Étape 1.4.1.4
Multipliez par .
Étape 1.4.1.5
Multipliez par .
Étape 1.4.1.6
Multipliez par .
Étape 1.4.2
Soustrayez de .
Étape 2
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Soustrayez de .
Étape 3
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.2
Associez et .
Étape 3.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Multipliez par .
Étape 3.2.4.2
Soustrayez de .
Étape 3.2.5
Placez le signe moins devant la fraction.
Étape 4
Multipliez par le plus petit dénominateur commun , puis simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Multipliez par .
Étape 4.2.2
Multipliez par .
Étape 4.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.2.3.2
Annulez le facteur commun.
Étape 4.2.3.3
Réécrivez l’expression.
Étape 5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Élevez à la puissance .
Étape 7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1
Multipliez par .
Étape 7.1.2.2
Multipliez par .
Étape 7.1.3
Additionnez et .
Étape 7.1.4
Réécrivez comme .
Étape 7.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7.2
Multipliez par .
Étape 7.3
Simplifiez .
Étape 8
La réponse finale est la combinaison des deux solutions.
Étape 9
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :