Entrer un problème...
Algèbre Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Annulez le facteur commun de .
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Réécrivez l’expression.
Étape 4
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Factorisez à partir de .
Étape 4.2.1
Factorisez à partir de .
Étape 4.2.2
Factorisez à partir de .
Étape 4.2.3
Factorisez à partir de .
Étape 4.2.4
Factorisez à partir de .
Étape 4.2.5
Factorisez à partir de .
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Étape 4.3.2.1
Annulez le facteur commun de .
Étape 4.3.2.1.1
Annulez le facteur commun.
Étape 4.3.2.1.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Étape 4.3.3.1
Factorisez à partir de .
Étape 4.3.3.2
Factorisez à partir de .
Étape 4.3.3.3
Factorisez à partir de .
Étape 4.3.3.4
Factorisez à partir de .
Étape 4.3.3.5
Factorisez à partir de .
Étape 4.3.3.6
Réécrivez les nombres négatifs.
Étape 4.3.3.6.1
Réécrivez comme .
Étape 4.3.3.6.2
Placez le signe moins devant la fraction.
Étape 4.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5.3
La solution complète est le résultat des parties positive et négative de la solution.