Algèbre Exemples

Résoudre en utilisant la formule quadratique x^4+12x^2-8
Étape 1
Définissez égal à .
Étape 2
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Multipliez par .
Étape 5.1.2.2
Multipliez par .
Étape 5.1.3
Additionnez et .
Étape 5.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.1
Factorisez à partir de .
Étape 5.1.4.2
Réécrivez comme .
Étape 5.1.5
Extrayez les termes de sous le radical.
Étape 5.2
Multipliez par .
Étape 5.3
Simplifiez .
Étape 6
La réponse finale est la combinaison des deux solutions.
Étape 7
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 8
Résolvez la première équation pour .
Étape 9
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 9.2
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 9.2.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 9.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 10
Résolvez la deuxième équation pour .
Étape 11
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Supprimez les parenthèses.
Étape 11.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 11.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Réécrivez comme .
Étape 11.3.2
Réécrivez comme .
Étape 11.3.3
Réécrivez comme .
Étape 11.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 11.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 11.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 11.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12
La solution à est .