Examples

Find the Variables
[12-2-3]=[x2-2-3]
Step 1
Find the function rule.
Tap for more steps...
Step 1.1
Check if the function rule is linear.
Tap for more steps...
Step 1.1.1
To find if the table follows a function rule, check to see if the values follow the linear form y=ax+b.
y=ax+b
Step 1.1.2
Build a set of equations from the table such that y=ax+b.
2=a(2)+b-2=a(-2)+b-3=a(-3)+b
Step 1.1.3
Calculate the values of a and b.
Tap for more steps...
Step 1.1.3.1
Solve for b in 2=a(2)+b.
Tap for more steps...
Step 1.1.3.1.1
Rewrite the equation as a(2)+b=2.
a(2)+b=2
-2=a(-2)+b
-3=a(-3)+b
Step 1.1.3.1.2
Move 2 to the left of a.
2a+b=2
-2=a(-2)+b
-3=a(-3)+b
Step 1.1.3.1.3
Subtract 2a from both sides of the equation.
b=2-2a
-2=a(-2)+b
-3=a(-3)+b
b=2-2a
-2=a(-2)+b
-3=a(-3)+b
Step 1.1.3.2
Replace all occurrences of b with 2-2a in each equation.
Tap for more steps...
Step 1.1.3.2.1
Replace all occurrences of b in -2=a(-2)+b with 2-2a.
-2=a(-2)+2-2a
b=2-2a
-3=a(-3)+b
Step 1.1.3.2.2
Simplify -2=a(-2)+2-2a.
Tap for more steps...
Step 1.1.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 1.1.3.2.2.1.1
Remove parentheses.
-2=a(-2)+2-2a
b=2-2a
-3=a(-3)+b
-2=a(-2)+2-2a
b=2-2a
-3=a(-3)+b
Step 1.1.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 1.1.3.2.2.2.1
Simplify a(-2)+2-2a.
Tap for more steps...
Step 1.1.3.2.2.2.1.1
Move -2 to the left of a.
-2=-2a+2-2a
b=2-2a
-3=a(-3)+b
Step 1.1.3.2.2.2.1.2
Subtract 2a from -2a.
-2=-4a+2
b=2-2a
-3=a(-3)+b
-2=-4a+2
b=2-2a
-3=a(-3)+b
-2=-4a+2
b=2-2a
-3=a(-3)+b
-2=-4a+2
b=2-2a
-3=a(-3)+b
Step 1.1.3.2.3
Replace all occurrences of b in -3=a(-3)+b with 2-2a.
-3=a(-3)+2-2a
-2=-4a+2
b=2-2a
Step 1.1.3.2.4
Simplify -3=a(-3)+2-2a.
Tap for more steps...
Step 1.1.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 1.1.3.2.4.1.1
Remove parentheses.
-3=a(-3)+2-2a
-2=-4a+2
b=2-2a
-3=a(-3)+2-2a
-2=-4a+2
b=2-2a
Step 1.1.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.3.2.4.2.1
Simplify a(-3)+2-2a.
Tap for more steps...
Step 1.1.3.2.4.2.1.1
Move -3 to the left of a.
-3=-3a+2-2a
-2=-4a+2
b=2-2a
Step 1.1.3.2.4.2.1.2
Subtract 2a from -3a.
-3=-5a+2
-2=-4a+2
b=2-2a
-3=-5a+2
-2=-4a+2
b=2-2a
-3=-5a+2
-2=-4a+2
b=2-2a
-3=-5a+2
-2=-4a+2
b=2-2a
-3=-5a+2
-2=-4a+2
b=2-2a
Step 1.1.3.3
Solve for a in -3=-5a+2.
Tap for more steps...
Step 1.1.3.3.1
Rewrite the equation as -5a+2=-3.
-5a+2=-3
-2=-4a+2
b=2-2a
Step 1.1.3.3.2
Move all terms not containing a to the right side of the equation.
Tap for more steps...
Step 1.1.3.3.2.1
Subtract 2 from both sides of the equation.
-5a=-3-2
-2=-4a+2
b=2-2a
Step 1.1.3.3.2.2
Subtract 2 from -3.
-5a=-5
-2=-4a+2
b=2-2a
-5a=-5
-2=-4a+2
b=2-2a
Step 1.1.3.3.3
Divide each term in -5a=-5 by -5 and simplify.
Tap for more steps...
Step 1.1.3.3.3.1
Divide each term in -5a=-5 by -5.
-5a-5=-5-5
-2=-4a+2
b=2-2a
Step 1.1.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 1.1.3.3.3.2.1
Cancel the common factor of -5.
Tap for more steps...
Step 1.1.3.3.3.2.1.1
Cancel the common factor.
-5a-5=-5-5
-2=-4a+2
b=2-2a
Step 1.1.3.3.3.2.1.2
Divide a by 1.
a=-5-5
-2=-4a+2
b=2-2a
a=-5-5
-2=-4a+2
b=2-2a
a=-5-5
-2=-4a+2
b=2-2a
Step 1.1.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 1.1.3.3.3.3.1
Divide -5 by -5.
a=1
-2=-4a+2
b=2-2a
a=1
-2=-4a+2
b=2-2a
a=1
-2=-4a+2
b=2-2a
a=1
-2=-4a+2
b=2-2a
Step 1.1.3.4
Replace all occurrences of a with 1 in each equation.
Tap for more steps...
Step 1.1.3.4.1
Replace all occurrences of a in -2=-4a+2 with 1.
-2=-41+2
a=1
b=2-2a
Step 1.1.3.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.3.4.2.1
Simplify -41+2.
Tap for more steps...
Step 1.1.3.4.2.1.1
Multiply -4 by 1.
-2=-4+2
a=1
b=2-2a
Step 1.1.3.4.2.1.2
Add -4 and 2.
-2=-2
a=1
b=2-2a
-2=-2
a=1
b=2-2a
-2=-2
a=1
b=2-2a
Step 1.1.3.4.3
Replace all occurrences of a in b=2-2a with 1.
b=2-21
-2=-2
a=1
Step 1.1.3.4.4
Simplify the right side.
Tap for more steps...
Step 1.1.3.4.4.1
Simplify 2-21.
Tap for more steps...
Step 1.1.3.4.4.1.1
Multiply -2 by 1.
b=2-2
-2=-2
a=1
Step 1.1.3.4.4.1.2
Subtract 2 from 2.
b=0
-2=-2
a=1
b=0
-2=-2
a=1
b=0
-2=-2
a=1
b=0
-2=-2
a=1
Step 1.1.3.5
Remove any equations from the system that are always true.
b=0
a=1
Step 1.1.3.6
List all of the solutions.
b=0,a=1
b=0,a=1
Step 1.1.4
Calculate the value of y using each x value in the relation and compare this value to the given y value in the relation.
Tap for more steps...
Step 1.1.4.1
Calculate the value of y when a=1, b=0, and x=2.
Tap for more steps...
Step 1.1.4.1.1
Multiply 2 by 1.
y=2+0
Step 1.1.4.1.2
Add 2 and 0.
y=2
y=2
Step 1.1.4.2
If the table has a linear function rule, y=y for the corresponding x value, x=2. This check passes since y=2 and y=2.
2=2
Step 1.1.4.3
Calculate the value of y when a=1, b=0, and x=-2.
Tap for more steps...
Step 1.1.4.3.1
Multiply -2 by 1.
y=-2+0
Step 1.1.4.3.2
Add -2 and 0.
y=-2
y=-2
Step 1.1.4.4
If the table has a linear function rule, y=y for the corresponding x value, x=-2. This check passes since y=-2 and y=-2.
-2=-2
Step 1.1.4.5
Calculate the value of y when a=1, b=0, and x=-3.
Tap for more steps...
Step 1.1.4.5.1
Multiply -3 by 1.
y=-3+0
Step 1.1.4.5.2
Add -3 and 0.
y=-3
y=-3
Step 1.1.4.6
If the table has a linear function rule, y=y for the corresponding x value, x=-3. This check passes since y=-3 and y=-3.
-3=-3
Step 1.1.4.7
Since y=y for the corresponding x values, the function is linear.
The function is linear
The function is linear
The function is linear
Step 1.2
Since all y=y, the function is linear and follows the form y=x.
y=x
y=x
Step 2
Find x.
Tap for more steps...
Step 2.1
Use the function rule equation to find x.
x=1
Step 2.2
Simplify.
x=1
x=1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay