Examples

2x+y=-22x+y=2 , x+2y=2x+2y=2
Step 1
Subtract 2x2x from both sides of the equation.
y=-2-2xy=22x
x+2y=2x+2y=2
Step 2
Replace all occurrences of yy with -2-2x22x in each equation.
Tap for more steps...
Step 2.1
Replace all occurrences of yy in x+2y=2x+2y=2 with -2-2x22x.
x+2(-2-2x)=2x+2(22x)=2
y=-2-2xy=22x
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify x+2(-2-2x)x+2(22x).
Tap for more steps...
Step 2.2.1.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1.1
Apply the distributive property.
x+2-2+2(-2x)=2x+22+2(2x)=2
y=-2-2xy=22x
Step 2.2.1.1.2
Multiply 22 by -22.
x-4+2(-2x)=2x4+2(2x)=2
y=-2-2xy=22x
Step 2.2.1.1.3
Multiply -22 by 22.
x-4-4x=2x44x=2
y=-2-2xy=22x
x-4-4x=2x44x=2
y=-2-2xy=22x
Step 2.2.1.2
Subtract 4x4x from xx.
-3x-4=23x4=2
y=-2-2xy=22x
-3x-4=23x4=2
y=-2-2xy=22x
-3x-4=23x4=2
y=-2-2xy=22x
-3x-4=23x4=2
y=-2-2xy=22x
Step 3
Solve for xx in -3x-4=23x4=2.
Tap for more steps...
Step 3.1
Move all terms not containing xx to the right side of the equation.
Tap for more steps...
Step 3.1.1
Add 44 to both sides of the equation.
-3x=2+43x=2+4
y=-2-2xy=22x
Step 3.1.2
Add 22 and 44.
-3x=63x=6
y=-2-2xy=22x
-3x=63x=6
y=-2-2xy=22x
Step 3.2
Divide each term in -3x=63x=6 by -33 and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in -3x=63x=6 by -33.
-3x-3=6-33x3=63
y=-2-2xy=22x
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of -33.
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor.
-3x-3=6-3
y=-2-2x
Step 3.2.2.1.2
Divide x by 1.
x=6-3
y=-2-2x
x=6-3
y=-2-2x
x=6-3
y=-2-2x
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Divide 6 by -3.
x=-2
y=-2-2x
x=-2
y=-2-2x
x=-2
y=-2-2x
x=-2
y=-2-2x
Step 4
Replace all occurrences of x with -2 in each equation.
Tap for more steps...
Step 4.1
Replace all occurrences of x in y=-2-2x with -2.
y=-2-2-2
x=-2
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify -2-2-2.
Tap for more steps...
Step 4.2.1.1
Multiply -2 by -2.
y=-2+4
x=-2
Step 4.2.1.2
Add -2 and 4.
y=2
x=-2
y=2
x=-2
y=2
x=-2
y=2
x=-2
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(-2,2)
Step 6
The result can be shown in multiple forms.
Point Form:
(-2,2)
Equation Form:
x=-2,y=2
Step 7
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay