Examples
2x+y=-22x+y=−2 , x+2y=2x+2y=2
Step 1
Subtract 2x2x from both sides of the equation.
y=-2-2xy=−2−2x
x+2y=2x+2y=2
Step 2
Step 2.1
Replace all occurrences of yy in x+2y=2x+2y=2 with -2-2x−2−2x.
x+2(-2-2x)=2x+2(−2−2x)=2
y=-2-2xy=−2−2x
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify x+2(-2-2x)x+2(−2−2x).
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
x+2⋅-2+2(-2x)=2x+2⋅−2+2(−2x)=2
y=-2-2xy=−2−2x
Step 2.2.1.1.2
Multiply 22 by -2−2.
x-4+2(-2x)=2x−4+2(−2x)=2
y=-2-2xy=−2−2x
Step 2.2.1.1.3
Multiply -2−2 by 22.
x-4-4x=2x−4−4x=2
y=-2-2xy=−2−2x
x-4-4x=2x−4−4x=2
y=-2-2xy=−2−2x
Step 2.2.1.2
Subtract 4x4x from xx.
-3x-4=2−3x−4=2
y=-2-2xy=−2−2x
-3x-4=2−3x−4=2
y=-2-2xy=−2−2x
-3x-4=2−3x−4=2
y=-2-2xy=−2−2x
-3x-4=2−3x−4=2
y=-2-2xy=−2−2x
Step 3
Step 3.1
Move all terms not containing xx to the right side of the equation.
Step 3.1.1
Add 44 to both sides of the equation.
-3x=2+4−3x=2+4
y=-2-2xy=−2−2x
Step 3.1.2
Add 22 and 44.
-3x=6−3x=6
y=-2-2xy=−2−2x
-3x=6−3x=6
y=-2-2xy=−2−2x
Step 3.2
Divide each term in -3x=6−3x=6 by -3−3 and simplify.
Step 3.2.1
Divide each term in -3x=6−3x=6 by -3−3.
-3x-3=6-3−3x−3=6−3
y=-2-2xy=−2−2x
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of -3−3.
Step 3.2.2.1.1
Cancel the common factor.
-3x-3=6-3
y=-2-2x
Step 3.2.2.1.2
Divide x by 1.
x=6-3
y=-2-2x
x=6-3
y=-2-2x
x=6-3
y=-2-2x
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Divide 6 by -3.
x=-2
y=-2-2x
x=-2
y=-2-2x
x=-2
y=-2-2x
x=-2
y=-2-2x
Step 4
Step 4.1
Replace all occurrences of x in y=-2-2x with -2.
y=-2-2⋅-2
x=-2
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify -2-2⋅-2.
Step 4.2.1.1
Multiply -2 by -2.
y=-2+4
x=-2
Step 4.2.1.2
Add -2 and 4.
y=2
x=-2
y=2
x=-2
y=2
x=-2
y=2
x=-2
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(-2,2)
Step 6
The result can be shown in multiple forms.
Point Form:
(-2,2)
Equation Form:
x=-2,y=2
Step 7