Examples
y=3xy=3x , y=-13xy=−13x
Step 1
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Find the values of mm and bb using the form y=mx+by=mx+b.
m1=3m1=3
b=0b=0
m1=3m1=3
b=0b=0
Step 2
Step 2.1
Rewrite in slope-intercept form.
Step 2.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.1.2
Simplify the right side.
Step 2.1.2.1
Combine xx and 1313.
y=-x3y=−x3
y=-x3y=−x3
Step 2.1.3
Write in y=mx+by=mx+b form.
Step 2.1.3.1
Reorder terms.
y=-(13x)y=−(13x)
Step 2.1.3.2
Remove parentheses.
y=-13xy=−13x
y=-13xy=−13x
y=-13xy=−13x
Step 2.2
Find the values of mm and bb using the form y=mx+by=mx+b.
m2=-13m2=−13
b=0b=0
m2=-13m2=−13
b=0b=0
Step 3
Compare the slopes mm of the two equations.
m1=3,m2=-13m1=3,m2=−13
Step 4
Compare the decimal form of one slope with the negative reciprocal of the other slope. If they are equal, then the lines are perpendicular. If the they are not equal, then the lines are not perpendicular.
m1=3,m2=3m1=3,m2=3
Step 5
The equations are perpendicular because the slopes of the two lines are negative reciprocals.
Perpendicular
Step 6