Examples
3x+1+6x-33x+1+6x−3
Step 1
To write 3x+1 as a fraction with a common denominator, multiply by x-3x-3.
3x+1⋅x-3x-3+6x-3
Step 2
To write 6x-3 as a fraction with a common denominator, multiply by x+1x+1.
3x+1⋅x-3x-3+6x-3⋅x+1x+1
Step 3
Step 3.1
Multiply 3x+1 by x-3x-3.
3(x-3)(x+1)(x-3)+6x-3⋅x+1x+1
Step 3.2
Multiply 6x-3 by x+1x+1.
3(x-3)(x+1)(x-3)+6(x+1)(x-3)(x+1)
Step 3.3
Reorder the factors of (x-3)(x+1).
3(x-3)(x+1)(x-3)+6(x+1)(x+1)(x-3)
3(x-3)(x+1)(x-3)+6(x+1)(x+1)(x-3)
Step 4
Combine the numerators over the common denominator.
3(x-3)+6(x+1)(x+1)(x-3)
Step 5
Step 5.1
Factor 3 out of 3(x-3)+6(x+1).
Step 5.1.1
Factor 3 out of 6(x+1).
3(x-3)+3(2(x+1))(x+1)(x-3)
Step 5.1.2
Factor 3 out of 3(x-3)+3(2(x+1)).
3(x-3+2(x+1))(x+1)(x-3)
3(x-3+2(x+1))(x+1)(x-3)
Step 5.2
Apply the distributive property.
3(x-3+2x+2⋅1)(x+1)(x-3)
Step 5.3
Multiply 2 by 1.
3(x-3+2x+2)(x+1)(x-3)
Step 5.4
Add x and 2x.
3(3x-3+2)(x+1)(x-3)
Step 5.5
Add -3 and 2.
3(3x-1)(x+1)(x-3)
3(3x-1)(x+1)(x-3)