Examples
[122220032]⎡⎢⎣122220032⎤⎥⎦
Step 1
Step 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
Step 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|2032|∣∣∣2032∣∣∣
Step 1.1.4
Multiply element a11a11 by its cofactor.
1|2032|1∣∣∣2032∣∣∣
Step 1.1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2232|∣∣∣2232∣∣∣
Step 1.1.6
Multiply element a21a21 by its cofactor.
-2|2232|−2∣∣∣2232∣∣∣
Step 1.1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|2220|∣∣∣2220∣∣∣
Step 1.1.8
Multiply element a31a31 by its cofactor.
0|2220|0∣∣∣2220∣∣∣
Step 1.1.9
Add the terms together.
1|2032|-2|2232|+0|2220|1∣∣∣2032∣∣∣−2∣∣∣2232∣∣∣+0∣∣∣2220∣∣∣
1|2032|-2|2232|+0|2220|
Step 1.2
Multiply 0 by |2220|.
1|2032|-2|2232|+0
Step 1.3
Evaluate |2032|.
Step 1.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(2⋅2-3⋅0)-2|2232|+0
Step 1.3.2
Simplify the determinant.
Step 1.3.2.1
Simplify each term.
Step 1.3.2.1.1
Multiply 2 by 2.
1(4-3⋅0)-2|2232|+0
Step 1.3.2.1.2
Multiply -3 by 0.
1(4+0)-2|2232|+0
1(4+0)-2|2232|+0
Step 1.3.2.2
Add 4 and 0.
1⋅4-2|2232|+0
1⋅4-2|2232|+0
1⋅4-2|2232|+0
Step 1.4
Evaluate |2232|.
Step 1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅4-2(2⋅2-3⋅2)+0
Step 1.4.2
Simplify the determinant.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Multiply 2 by 2.
1⋅4-2(4-3⋅2)+0
Step 1.4.2.1.2
Multiply -3 by 2.
1⋅4-2(4-6)+0
1⋅4-2(4-6)+0
Step 1.4.2.2
Subtract 6 from 4.
1⋅4-2⋅-2+0
1⋅4-2⋅-2+0
1⋅4-2⋅-2+0
Step 1.5
Simplify the determinant.
Step 1.5.1
Simplify each term.
Step 1.5.1.1
Multiply 4 by 1.
4-2⋅-2+0
Step 1.5.1.2
Multiply -2 by -2.
4+4+0
4+4+0
Step 1.5.2
Add 4 and 4.
8+0
Step 1.5.3
Add 8 and 0.
8
8
8
Step 2
Since the determinant is non-zero, the inverse exists.
Step 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[122100220010032001]
Step 4
Step 4.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Step 4.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[1221002-2⋅12-2⋅20-2⋅20-2⋅11-2⋅00-2⋅0032001]
Step 4.1.2
Simplify R2.
[1221000-2-4-210032001]
[1221000-2-4-210032001]
Step 4.2
Multiply each element of R2 by -12 to make the entry at 2,2 a 1.
Step 4.2.1
Multiply each element of R2 by -12 to make the entry at 2,2 a 1.
[122100-12⋅0-12⋅-2-12⋅-4-12⋅-2-12⋅1-12⋅0032001]
Step 4.2.2
Simplify R2.
[1221000121-120032001]
[1221000121-120032001]
Step 4.3
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
Step 4.3.1
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
[1221000121-1200-3⋅03-3⋅12-3⋅20-3⋅10-3(-12)1-3⋅0]
Step 4.3.2
Simplify R3.
[1221000121-12000-4-3321]
[1221000121-12000-4-3321]
Step 4.4
Multiply each element of R3 by -14 to make the entry at 3,3 a 1.
Step 4.4.1
Multiply each element of R3 by -14 to make the entry at 3,3 a 1.
[1221000121-120-14⋅0-14⋅0-14⋅-4-14⋅-3-14⋅32-14⋅1]
Step 4.4.2
Simplify R3.
[1221000121-12000134-38-14]
[1221000121-12000134-38-14]
Step 4.5
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
Step 4.5.1
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
[1221000-2⋅01-2⋅02-2⋅11-2(34)-12-2(-38)0-2(-14)00134-38-14]
Step 4.5.2
Simplify R2.
[122100010-12141200134-38-14]
[122100010-12141200134-38-14]
Step 4.6
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
Step 4.6.1
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
[1-2⋅02-2⋅02-2⋅11-2(34)0-2(-38)0-2(-14)010-12141200134-38-14]
Step 4.6.2
Simplify R1.
[120-123412010-12141200134-38-14]
[120-123412010-12141200134-38-14]
Step 4.7
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Step 4.7.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅10-2⋅0-12-2(-12)34-2(14)12-2(12)010-12141200134-38-14]
Step 4.7.2
Simplify R1.
[1001214-12010-12141200134-38-14]
[1001214-12010-12141200134-38-14]
[1001214-12010-12141200134-38-14]
Step 5
The right half of the reduced row echelon form is the inverse.
[1214-12-12141234-38-14]