Examples

Find the Determinant
[1450021325411502]⎢ ⎢ ⎢ ⎢1450021325411502⎥ ⎥ ⎥ ⎥
Step 1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Tap for more steps...
Step 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣ ∣ ∣ ∣++++++++∣ ∣ ∣ ∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|213541502|∣ ∣213541502∣ ∣
Step 1.4
Multiply element a11a11 by its cofactor.
1|213541502|1∣ ∣213541502∣ ∣
Step 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|013241102|∣ ∣013241102∣ ∣
Step 1.6
Multiply element a12a12 by its cofactor.
-4|013241102|4∣ ∣013241102∣ ∣
Step 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|023251152|∣ ∣023251152∣ ∣
Step 1.8
Multiply element a13a13 by its cofactor.
5|023251152|5∣ ∣023251152∣ ∣
Step 1.9
The minor for a14a14 is the determinant with row 11 and column 44 deleted.
|021254150|∣ ∣021254150∣ ∣
Step 1.10
Multiply element a14a14 by its cofactor.
0|021254150|0∣ ∣021254150∣ ∣
Step 1.11
Add the terms together.
1|213541502|-4|013241102|+5|023251152|+0|021254150|1∣ ∣213541502∣ ∣4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0∣ ∣021254150∣ ∣
1|213541502|-4|013241102|+5|023251152|+0|021254150|1∣ ∣213541502∣ ∣4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0∣ ∣021254150∣ ∣
Step 2
Multiply 00 by |021254150|∣ ∣021254150∣ ∣.
1|213541502|-4|013241102|+5|023251152|+01∣ ∣213541502∣ ∣4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0
Step 3
Evaluate |213541502|∣ ∣213541502∣ ∣.
Tap for more steps...
Step 3.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 22 by its cofactor and add.
Tap for more steps...
Step 3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.1.3
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|5152|5152
Step 3.1.4
Multiply element a12a12 by its cofactor.
-1|5152|15152
Step 3.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|2352|2352
Step 3.1.6
Multiply element a22a22 by its cofactor.
4|2352|42352
Step 3.1.7
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|2351|2351
Step 3.1.8
Multiply element a32a32 by its cofactor.
0|2351|02351
Step 3.1.9
Add the terms together.
1(-1|5152|+4|2352|+0|2351|)-4|013241102|+5|023251152|+01(15152+42352+02351)4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0
1(-1|5152|+4|2352|+0|2351|)-4|013241102|+5|023251152|+01(15152+42352+02351)4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0
Step 3.2
Multiply 00 by |2351|2351.
1(-1|5152|+4|2352|+0)-4|013241102|+5|023251152|+01(15152+42352+0)4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0
Step 3.3
Evaluate |5152|5152.
Tap for more steps...
Step 3.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
1(-1(52-51)+4|2352|+0)-4|013241102|+5|023251152|+01(1(5251)+42352+0)4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0
Step 3.3.2
Simplify the determinant.
Tap for more steps...
Step 3.3.2.1
Simplify each term.
Tap for more steps...
Step 3.3.2.1.1
Multiply 55 by 22.
1(-1(10-51)+4|2352|+0)-4|013241102|+5|023251152|+01(1(1051)+42352+0)4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0
Step 3.3.2.1.2
Multiply -55 by 11.
1(-1(10-5)+4|2352|+0)-4|013241102|+5|023251152|+01(1(105)+42352+0)4∣ ∣013241102∣ ∣+5∣ ∣023251152∣ ∣+0
1(-1(10-5)+4|2352|+0)-4|013241102|+5|023251152|+0
Step 3.3.2.2
Subtract 5 from 10.
1(-15+4|2352|+0)-4|013241102|+5|023251152|+0
1(-15+4|2352|+0)-4|013241102|+5|023251152|+0
1(-15+4|2352|+0)-4|013241102|+5|023251152|+0
Step 3.4
Evaluate |2352|.
Tap for more steps...
Step 3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(-15+4(22-53)+0)-4|013241102|+5|023251152|+0
Step 3.4.2
Simplify the determinant.
Tap for more steps...
Step 3.4.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.1.1
Multiply 2 by 2.
1(-15+4(4-53)+0)-4|013241102|+5|023251152|+0
Step 3.4.2.1.2
Multiply -5 by 3.
1(-15+4(4-15)+0)-4|013241102|+5|023251152|+0
1(-15+4(4-15)+0)-4|013241102|+5|023251152|+0
Step 3.4.2.2
Subtract 15 from 4.
1(-15+4-11+0)-4|013241102|+5|023251152|+0
1(-15+4-11+0)-4|013241102|+5|023251152|+0
1(-15+4-11+0)-4|013241102|+5|023251152|+0
Step 3.5
Simplify the determinant.
Tap for more steps...
Step 3.5.1
Simplify each term.
Tap for more steps...
Step 3.5.1.1
Multiply -1 by 5.
1(-5+4-11+0)-4|013241102|+5|023251152|+0
Step 3.5.1.2
Multiply 4 by -11.
1(-5-44+0)-4|013241102|+5|023251152|+0
1(-5-44+0)-4|013241102|+5|023251152|+0
Step 3.5.2
Subtract 44 from -5.
1(-49+0)-4|013241102|+5|023251152|+0
Step 3.5.3
Add -49 and 0.
1-49-4|013241102|+5|023251152|+0
1-49-4|013241102|+5|023251152|+0
1-49-4|013241102|+5|023251152|+0
Step 4
Evaluate |013241102|.
Tap for more steps...
Step 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|4102|
Step 4.1.4
Multiply element a11 by its cofactor.
0|4102|
Step 4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2112|
Step 4.1.6
Multiply element a12 by its cofactor.
-1|2112|
Step 4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2410|
Step 4.1.8
Multiply element a13 by its cofactor.
3|2410|
Step 4.1.9
Add the terms together.
1-49-4(0|4102|-1|2112|+3|2410|)+5|023251152|+0
1-49-4(0|4102|-1|2112|+3|2410|)+5|023251152|+0
Step 4.2
Multiply 0 by |4102|.
1-49-4(0-1|2112|+3|2410|)+5|023251152|+0
Step 4.3
Evaluate |2112|.
Tap for more steps...
Step 4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4(0-1(22-11)+3|2410|)+5|023251152|+0
Step 4.3.2
Simplify the determinant.
Tap for more steps...
Step 4.3.2.1
Simplify each term.
Tap for more steps...
Step 4.3.2.1.1
Multiply 2 by 2.
1-49-4(0-1(4-11)+3|2410|)+5|023251152|+0
Step 4.3.2.1.2
Multiply -1 by 1.
1-49-4(0-1(4-1)+3|2410|)+5|023251152|+0
1-49-4(0-1(4-1)+3|2410|)+5|023251152|+0
Step 4.3.2.2
Subtract 1 from 4.
1-49-4(0-13+3|2410|)+5|023251152|+0
1-49-4(0-13+3|2410|)+5|023251152|+0
1-49-4(0-13+3|2410|)+5|023251152|+0
Step 4.4
Evaluate |2410|.
Tap for more steps...
Step 4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4(0-13+3(20-14))+5|023251152|+0
Step 4.4.2
Simplify the determinant.
Tap for more steps...
Step 4.4.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.1.1
Multiply 2 by 0.
1-49-4(0-13+3(0-14))+5|023251152|+0
Step 4.4.2.1.2
Multiply -1 by 4.
1-49-4(0-13+3(0-4))+5|023251152|+0
1-49-4(0-13+3(0-4))+5|023251152|+0
Step 4.4.2.2
Subtract 4 from 0.
1-49-4(0-13+3-4)+5|023251152|+0
1-49-4(0-13+3-4)+5|023251152|+0
1-49-4(0-13+3-4)+5|023251152|+0
Step 4.5
Simplify the determinant.
Tap for more steps...
Step 4.5.1
Simplify each term.
Tap for more steps...
Step 4.5.1.1
Multiply -1 by 3.
1-49-4(0-3+3-4)+5|023251152|+0
Step 4.5.1.2
Multiply 3 by -4.
1-49-4(0-3-12)+5|023251152|+0
1-49-4(0-3-12)+5|023251152|+0
Step 4.5.2
Subtract 3 from 0.
1-49-4(-3-12)+5|023251152|+0
Step 4.5.3
Subtract 12 from -3.
1-49-4-15+5|023251152|+0
1-49-4-15+5|023251152|+0
1-49-4-15+5|023251152|+0
Step 5
Evaluate |023251152|.
Tap for more steps...
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5152|
Step 5.1.4
Multiply element a11 by its cofactor.
0|5152|
Step 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2112|
Step 5.1.6
Multiply element a12 by its cofactor.
-2|2112|
Step 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2515|
Step 5.1.8
Multiply element a13 by its cofactor.
3|2515|
Step 5.1.9
Add the terms together.
1-49-4-15+5(0|5152|-2|2112|+3|2515|)+0
1-49-4-15+5(0|5152|-2|2112|+3|2515|)+0
Step 5.2
Multiply 0 by |5152|.
1-49-4-15+5(0-2|2112|+3|2515|)+0
Step 5.3
Evaluate |2112|.
Tap for more steps...
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4-15+5(0-2(22-11)+3|2515|)+0
Step 5.3.2
Simplify the determinant.
Tap for more steps...
Step 5.3.2.1
Simplify each term.
Tap for more steps...
Step 5.3.2.1.1
Multiply 2 by 2.
1-49-4-15+5(0-2(4-11)+3|2515|)+0
Step 5.3.2.1.2
Multiply -1 by 1.
1-49-4-15+5(0-2(4-1)+3|2515|)+0
1-49-4-15+5(0-2(4-1)+3|2515|)+0
Step 5.3.2.2
Subtract 1 from 4.
1-49-4-15+5(0-23+3|2515|)+0
1-49-4-15+5(0-23+3|2515|)+0
1-49-4-15+5(0-23+3|2515|)+0
Step 5.4
Evaluate |2515|.
Tap for more steps...
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4-15+5(0-23+3(25-15))+0
Step 5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Multiply 2 by 5.
1-49-4-15+5(0-23+3(10-15))+0
Step 5.4.2.1.2
Multiply -1 by 5.
1-49-4-15+5(0-23+3(10-5))+0
1-49-4-15+5(0-23+3(10-5))+0
Step 5.4.2.2
Subtract 5 from 10.
1-49-4-15+5(0-23+35)+0
1-49-4-15+5(0-23+35)+0
1-49-4-15+5(0-23+35)+0
Step 5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.1
Simplify each term.
Tap for more steps...
Step 5.5.1.1
Multiply -2 by 3.
1-49-4-15+5(0-6+35)+0
Step 5.5.1.2
Multiply 3 by 5.
1-49-4-15+5(0-6+15)+0
1-49-4-15+5(0-6+15)+0
Step 5.5.2
Subtract 6 from 0.
1-49-4-15+5(-6+15)+0
Step 5.5.3
Add -6 and 15.
1-49-4-15+59+0
1-49-4-15+59+0
1-49-4-15+59+0
Step 6
Simplify the determinant.
Tap for more steps...
Step 6.1
Simplify each term.
Tap for more steps...
Step 6.1.1
Multiply -49 by 1.
-49-4-15+59+0
Step 6.1.2
Multiply -4 by -15.
-49+60+59+0
Step 6.1.3
Multiply 5 by 9.
-49+60+45+0
-49+60+45+0
Step 6.2
Add -49 and 60.
11+45+0
Step 6.3
Add 11 and 45.
56+0
Step 6.4
Add 56 and 0.
56
56
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay