Examples
[212032342]
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3242|
Step 1.4
Multiply element a11 by its cofactor.
2|3242|
Step 1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1242|
Step 1.6
Multiply element a21 by its cofactor.
0|1242|
Step 1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1232|
Step 1.8
Multiply element a31 by its cofactor.
3|1232|
Step 1.9
Add the terms together.
2|3242|+0|1242|+3|1232|
2|3242|+0|1242|+3|1232|
Step 2
Multiply 0 by |1242|.
2|3242|+0+3|1232|
Step 3
Step 3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
2(3⋅2-4⋅2)+0+3|1232|
Step 3.2
Simplify the determinant.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 3 by 2.
2(6-4⋅2)+0+3|1232|
Step 3.2.1.2
Multiply -4 by 2.
2(6-8)+0+3|1232|
2(6-8)+0+3|1232|
Step 3.2.2
Subtract 8 from 6.
2⋅-2+0+3|1232|
2⋅-2+0+3|1232|
2⋅-2+0+3|1232|
Step 4
Step 4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
2⋅-2+0+3(1⋅2-3⋅2)
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 2 by 1.
2⋅-2+0+3(2-3⋅2)
Step 4.2.1.2
Multiply -3 by 2.
2⋅-2+0+3(2-6)
2⋅-2+0+3(2-6)
Step 4.2.2
Subtract 6 from 2.
2⋅-2+0+3⋅-4
2⋅-2+0+3⋅-4
2⋅-2+0+3⋅-4
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Multiply 2 by -2.
-4+0+3⋅-4
Step 5.1.2
Multiply 3 by -4.
-4+0-12
-4+0-12
Step 5.2
Add -4 and 0.
-4-12
Step 5.3
Subtract 12 from -4.
-16
-16