Examples
[12-15432-48]⎡⎢⎣12−15432−48⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|43-48|∣∣∣43−48∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=4⋅8-(-4⋅3)a11=4⋅8−(−4⋅3)
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 44 by 88.
a11=32-(-4⋅3)a11=32−(−4⋅3)
Step 2.1.2.2.1.2
Multiply -(-4⋅3)−(−4⋅3).
Step 2.1.2.2.1.2.1
Multiply -4−4 by 33.
a11=32--12a11=32−−12
Step 2.1.2.2.1.2.2
Multiply -1−1 by -12−12.
a11=32+12a11=32+12
a11=32+12a11=32+12
a11=32+12a11=32+12
Step 2.1.2.2.2
Add 3232 and 1212.
a11=44a11=44
a11=44a11=44
a11=44a11=44
a11=44a11=44
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|5328|∣∣∣5328∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=5⋅8-2⋅3a12=5⋅8−2⋅3
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 55 by 88.
a12=40-2⋅3a12=40−2⋅3
Step 2.2.2.2.1.2
Multiply -2−2 by 33.
a12=40-6a12=40−6
a12=40-6a12=40−6
Step 2.2.2.2.2
Subtract 66 from 4040.
a12=34a12=34
a12=34a12=34
a12=34a12=34
a12=34a12=34
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|542-4|∣∣∣542−4∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=5⋅-4-2⋅4a13=5⋅−4−2⋅4
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 55 by -4−4.
a13=-20-2⋅4a13=−20−2⋅4
Step 2.3.2.2.1.2
Multiply -2−2 by 44.
a13=-20-8a13=−20−8
a13=-20-8a13=−20−8
Step 2.3.2.2.2
Subtract 88 from -20−20.
a13=-28a13=−28
a13=-28a13=−28
a13=-28a13=−28
a13=-28a13=−28
Step 2.4
Calculate the minor for element a21a21.
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2-1-48|
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a21=2⋅8-(-4⋅-1)
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 2 by 8.
a21=16-(-4⋅-1)
Step 2.4.2.2.1.2
Multiply -(-4⋅-1).
Step 2.4.2.2.1.2.1
Multiply -4 by -1.
a21=16-1⋅4
Step 2.4.2.2.1.2.2
Multiply -1 by 4.
a21=16-4
a21=16-4
a21=16-4
Step 2.4.2.2.2
Subtract 4 from 16.
a21=12
a21=12
a21=12
a21=12
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1-128|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=1⋅8-2⋅-1
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 8 by 1.
a22=8-2⋅-1
Step 2.5.2.2.1.2
Multiply -2 by -1.
a22=8+2
a22=8+2
Step 2.5.2.2.2
Add 8 and 2.
a22=10
a22=10
a22=10
a22=10
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|122-4|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=1⋅-4-2⋅2
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply -4 by 1.
a23=-4-2⋅2
Step 2.6.2.2.1.2
Multiply -2 by 2.
a23=-4-4
a23=-4-4
Step 2.6.2.2.2
Subtract 4 from -4.
a23=-8
a23=-8
a23=-8
a23=-8
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|2-143|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=2⋅3-4⋅-1
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 2 by 3.
a31=6-4⋅-1
Step 2.7.2.2.1.2
Multiply -4 by -1.
a31=6+4
a31=6+4
Step 2.7.2.2.2
Add 6 and 4.
a31=10
a31=10
a31=10
a31=10
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1-153|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=1⋅3-5⋅-1
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 3 by 1.
a32=3-5⋅-1
Step 2.8.2.2.1.2
Multiply -5 by -1.
a32=3+5
a32=3+5
Step 2.8.2.2.2
Add 3 and 5.
a32=8
a32=8
a32=8
a32=8
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1254|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=1⋅4-5⋅2
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 4 by 1.
a33=4-5⋅2
Step 2.9.2.2.1.2
Multiply -5 by 2.
a33=4-10
a33=4-10
Step 2.9.2.2.2
Subtract 10 from 4.
a33=-6
a33=-6
a33=-6
a33=-6
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[44-34-28-1210810-8-6]
[44-34-28-1210810-8-6]