Examples
⎡⎢⎣14337−1−2112⎤⎥⎦
Step 1
Step 1.1
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
Step 1.1.1
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
⎡⎢⎣1433−3⋅17−3⋅4−1−3⋅3−2112⎤⎥⎦
Step 1.1.2
Simplify R2.
⎡⎢⎣1430−5−10−2112⎤⎥⎦
⎡⎢⎣1430−5−10−2112⎤⎥⎦
Step 1.2
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
Step 1.2.1
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
⎡⎢⎣1430−5−10−2+2⋅11+2⋅412+2⋅3⎤⎥⎦
Step 1.2.2
Simplify R3.
⎡⎢⎣1430−5−100918⎤⎥⎦
⎡⎢⎣1430−5−100918⎤⎥⎦
Step 1.3
Multiply each element of R2 by −15 to make the entry at 2,2 a 1.
Step 1.3.1
Multiply each element of R2 by −15 to make the entry at 2,2 a 1.
⎡⎢
⎢⎣143−15⋅0−15⋅−5−15⋅−100918⎤⎥
⎥⎦
Step 1.3.2
Simplify R2.
⎡⎢⎣1430120918⎤⎥⎦
⎡⎢⎣1430120918⎤⎥⎦
Step 1.4
Perform the row operation R3=R3−9R2 to make the entry at 3,2 a 0.
Step 1.4.1
Perform the row operation R3=R3−9R2 to make the entry at 3,2 a 0.
⎡⎢⎣1430120−9⋅09−9⋅118−9⋅2⎤⎥⎦
Step 1.4.2
Simplify R3.
⎡⎢⎣143012000⎤⎥⎦
⎡⎢⎣143012000⎤⎥⎦
Step 1.5
Perform the row operation R1=R1−4R2 to make the entry at 1,2 a 0.
Step 1.5.1
Perform the row operation R1=R1−4R2 to make the entry at 1,2 a 0.
⎡⎢⎣1−4⋅04−4⋅13−4⋅2012000⎤⎥⎦
Step 1.5.2
Simplify R1.
⎡⎢⎣10−5012000⎤⎥⎦
⎡⎢⎣10−5012000⎤⎥⎦
⎡⎢⎣10−5012000⎤⎥⎦
Step 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Step 3
The basis for the column space of a matrix is formed by considering corresponding pivot columns in the original matrix. The dimension of Col(A) is the number of vectors in a basis for Col(A).
Basis of Col(A): ⎧⎪⎨⎪⎩⎡⎢⎣13−2⎤⎥⎦,⎡⎢⎣471⎤⎥⎦⎫⎪⎬⎪⎭
Dimension of Col(A): 2