Examples
S([abc])=[a-b-ca-b+ca+b+5c]S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−b−ca−b+ca+b+5c⎤⎥⎦
Step 1
The kernel of a transformation is a vector that makes the transformation equal to the zero vector (the pre-image of the transformation).
[a-b-ca-b+ca+b+5c]=0⎡⎢⎣a−b−ca−b+ca+b+5c⎤⎥⎦=0
Step 2
Create a system of equations from the vector equation.
a-b-c=0a−b−c=0
a-b+c=0a−b+c=0
a+b+5c=0a+b+5c=0
Step 3
Write the system as a matrix.
[1-1-101-1101150]⎡⎢
⎢⎣1−1−101−1101150⎤⎥
⎥⎦
Step 4
Step 4.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
Step 4.1.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1-1-101-1-1+11+10-01150]⎡⎢
⎢⎣1−1−101−1−1+11+10−01150⎤⎥
⎥⎦
Step 4.1.2
Simplify R2R2.
[1-1-1000201150]⎡⎢
⎢⎣1−1−1000201150⎤⎥
⎥⎦
[1-1-1000201150]⎡⎢
⎢⎣1−1−1000201150⎤⎥
⎥⎦
Step 4.2
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
Step 4.2.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[1-1-1000201-11+15+10-0]⎡⎢
⎢⎣1−1−1000201−11+15+10−0⎤⎥
⎥⎦
Step 4.2.2
Simplify R3R3.
[1-1-1000200260]⎡⎢
⎢⎣1−1−1000200260⎤⎥
⎥⎦
[1-1-1000200260]⎡⎢
⎢⎣1−1−1000200260⎤⎥
⎥⎦
Step 4.3
Swap R3R3 with R2R2 to put a nonzero entry at 2,22,2.
[1-1-1002600020]⎡⎢
⎢⎣1−1−1002600020⎤⎥
⎥⎦
Step 4.4
Multiply each element of R2R2 by 1212 to make the entry at 2,22,2 a 11.
Step 4.4.1
Multiply each element of R2R2 by 1212 to make the entry at 2,22,2 a 11.
[1-1-10022262020020]⎡⎢
⎢⎣1−1−10022262020020⎤⎥
⎥⎦
Step 4.4.2
Simplify R2R2.
[1-1-1001300020]⎡⎢
⎢⎣1−1−1001300020⎤⎥
⎥⎦
[1-1-1001300020]⎡⎢
⎢⎣1−1−1001300020⎤⎥
⎥⎦
Step 4.5
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
Step 4.5.1
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
[1-1-10013002022202]⎡⎢
⎢⎣1−1−10013002022202⎤⎥
⎥⎦
Step 4.5.2
Simplify R3R3.
[1-1-1001300010]⎡⎢
⎢⎣1−1−1001300010⎤⎥
⎥⎦
[1-1-1001300010]⎡⎢
⎢⎣1−1−1001300010⎤⎥
⎥⎦
Step 4.6
Perform the row operation R2=R2-3R3R2=R2−3R3 to make the entry at 2,32,3 a 00.
Step 4.6.1
Perform the row operation R2=R2-3R3R2=R2−3R3 to make the entry at 2,32,3 a 00.
[1-1-100-3⋅01-3⋅03-3⋅10-3⋅00010]⎡⎢
⎢⎣1−1−100−3⋅01−3⋅03−3⋅10−3⋅00010⎤⎥
⎥⎦
Step 4.6.2
Simplify R2R2.
[1-1-1001000010]⎡⎢
⎢⎣1−1−1001000010⎤⎥
⎥⎦
[1-1-1001000010]⎡⎢
⎢⎣1−1−1001000010⎤⎥
⎥⎦
Step 4.7
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
Step 4.7.1
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
[1+0-1+0-1+1⋅10+001000010]⎡⎢
⎢⎣1+0−1+0−1+1⋅10+001000010⎤⎥
⎥⎦
Step 4.7.2
Simplify R1R1.
[1-10001000010]⎡⎢
⎢⎣1−10001000010⎤⎥
⎥⎦
[1-10001000010]⎡⎢
⎢⎣1−10001000010⎤⎥
⎥⎦
Step 4.8
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,21,2 a 00.
Step 4.8.1
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,21,2 a 00.
[1+0-1+1⋅10+00+001000010]⎡⎢
⎢⎣1+0−1+1⋅10+00+001000010⎤⎥
⎥⎦
Step 4.8.2
Simplify R1R1.
[100001000010]⎡⎢
⎢⎣100001000010⎤⎥
⎥⎦
[100001000010]⎡⎢
⎢⎣100001000010⎤⎥
⎥⎦
[100001000010]⎡⎢
⎢⎣100001000010⎤⎥
⎥⎦
Step 5
Use the result matrix to declare the final solution to the system of equations.
a=0a=0
b=0b=0
c=0c=0
Step 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[000]⎡⎢⎣abc⎤⎥⎦=⎡⎢⎣000⎤⎥⎦
Step 7
Write as a solution set.
{[000]}⎧⎪⎨⎪⎩⎡⎢⎣000⎤⎥⎦⎫⎪⎬⎪⎭
Step 8
The kernel of SS is the subspace {[000]}⎧⎪⎨⎪⎩⎡⎢⎣000⎤⎥⎦⎫⎪⎬⎪⎭.
K(S)={[000]}K(S)=⎧⎪⎨⎪⎩⎡⎢⎣000⎤⎥⎦⎫⎪⎬⎪⎭