Examples
f(x)=x2+1f(x)=x2+1
Step 1
Step 1.1
Complete the square for x2+1x2+1.
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=0b=0
c=1c=1
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=02⋅1d=02⋅1
Step 1.1.3.2
Cancel the common factor of 00 and 22.
Step 1.1.3.2.1
Factor 22 out of 00.
d=2(0)2⋅1d=2(0)2⋅1
Step 1.1.3.2.2
Cancel the common factors.
Step 1.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2(0)2(1)d=2(0)2(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2⋅02⋅1
Step 1.1.3.2.2.3
Rewrite the expression.
d=01
Step 1.1.3.2.2.4
Divide 0 by 1.
d=0
d=0
d=0
d=0
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=1-024⋅1
Step 1.1.4.2
Simplify the right side.
Step 1.1.4.2.1
Simplify each term.
Step 1.1.4.2.1.1
Raising 0 to any positive power yields 0.
e=1-04⋅1
Step 1.1.4.2.1.2
Multiply 4 by 1.
e=1-04
Step 1.1.4.2.1.3
Divide 0 by 4.
e=1-0
Step 1.1.4.2.1.4
Multiply -1 by 0.
e=1+0
e=1+0
Step 1.1.4.2.2
Add 1 and 0.
e=1
e=1
e=1
Step 1.1.5
Substitute the values of a, d, and e into the vertex form (x+0)2+1.
(x+0)2+1
(x+0)2+1
Step 1.2
Set y equal to the new right side.
y=(x+0)2+1
y=(x+0)2+1
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=0
k=1
Step 3
Find the vertex (h,k).
(0,1)
Step 4