Examples
f(x)=-1xf(x)=−1x
Step 1
Determine if the function is odd, even, or neither in order to find the symmetry.
1. If odd, the function is symmetric about the origin.
2. If even, the function is symmetric about the y-axis.
Step 2
Step 2.1
Find f(-x)f(−x) by substituting -x−x for all occurrence of xx in f(x)f(x).
f(-x)=-1-xf(−x)=−1−x
Step 2.2
Cancel the common factor of 11 and -1−1.
Step 2.2.1
Rewrite 11 as -1(-1)−1(−1).
f(-x)=--1⋅-1-xf(−x)=−−1⋅−1−x
Step 2.2.2
Move the negative in front of the fraction.
f(-x)=1xf(−x)=1x
f(-x)=1xf(−x)=1x
f(-x)=1xf(−x)=1x
Step 3
Step 3.1
Check if f(-x)=f(x)f(−x)=f(x).
Step 3.2
Since 1x1x≠≠-1x−1x, the function is not even.
The function is not even
The function is not even
Step 4
Step 4.1
Multiply -(-1x)−(−1x).
Step 4.1.1
Multiply -1−1 by -1−1.
-f(x)=1(1x)−f(x)=1(1x)
Step 4.1.2
Multiply 1x1x by 11.
-f(x)=1x−f(x)=1x
-f(x)=1x−f(x)=1x
Step 4.2
Since 1x=1x1x=1x, the function is odd.
The function is odd
The function is odd
Step 5
Since the function is odd, it is symmetric about the origin.
Origin Symmetry
Step 6
Since the function is not even, it is not symmetric about the y-axis.
No y-axis symmetry
Step 7
Determine the symmetry of the function.
Origin symmetry
Step 8