Examples
f(x)=x+1f(x)=x+1 , g(x)=4x-1g(x)=4x−1
Step 1
Replace the function designators with the actual functions in f(x)⋅(g(x))f(x)⋅(g(x)).
(x+1)⋅(4x-1)(x+1)⋅(4x−1)
Step 2
Step 2.1
Expand (x+1)(4x-1)(x+1)(4x−1) using the FOIL Method.
Step 2.1.1
Apply the distributive property.
x(4x-1)+1(4x-1)x(4x−1)+1(4x−1)
Step 2.1.2
Apply the distributive property.
x(4x)+x⋅-1+1(4x-1)x(4x)+x⋅−1+1(4x−1)
Step 2.1.3
Apply the distributive property.
x(4x)+x⋅-1+1(4x)+1⋅-1x(4x)+x⋅−1+1(4x)+1⋅−1
x(4x)+x⋅-1+1(4x)+1⋅-1x(4x)+x⋅−1+1(4x)+1⋅−1
Step 2.2
Simplify and combine like terms.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Rewrite using the commutative property of multiplication.
4x⋅x+x⋅-1+1(4x)+1⋅-14x⋅x+x⋅−1+1(4x)+1⋅−1
Step 2.2.1.2
Multiply xx by xx by adding the exponents.
Step 2.2.1.2.1
Move xx.
4(x⋅x)+x⋅-1+1(4x)+1⋅-14(x⋅x)+x⋅−1+1(4x)+1⋅−1
Step 2.2.1.2.2
Multiply xx by xx.
4x2+x⋅-1+1(4x)+1⋅-14x2+x⋅−1+1(4x)+1⋅−1
4x2+x⋅-1+1(4x)+1⋅-14x2+x⋅−1+1(4x)+1⋅−1
Step 2.2.1.3
Move -1 to the left of x.
4x2-1⋅x+1(4x)+1⋅-1
Step 2.2.1.4
Rewrite -1x as -x.
4x2-x+1(4x)+1⋅-1
Step 2.2.1.5
Multiply 4x by 1.
4x2-x+4x+1⋅-1
Step 2.2.1.6
Multiply -1 by 1.
4x2-x+4x-1
4x2-x+4x-1
Step 2.2.2
Add -x and 4x.
4x2+3x-1
4x2+3x-1
4x2+3x-1