Examples
[350750110]
Step 1
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI3)
Step 1.2
The identity matrix or unit matrix of size 3 is the 3×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI3).
Step 1.3.1
Substitute [350750110] for A.
p(λ)=determinant([350750110]-λI3)
Step 1.3.2
Substitute [100010001] for I3.
p(λ)=determinant([350750110]-λ[100010001])
p(λ)=determinant([350750110]-λ[100010001])
Step 1.4
Simplify.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([350750110]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2
Simplify each element in the matrix.
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([350750110]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2
Multiply -λ⋅0.
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([350750110]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([350750110]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([350750110]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.3
Multiply -λ⋅0.
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([350750110]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([350750110]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([350750110]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.4
Multiply -λ⋅0.
Step 1.4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([350750110]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([350750110]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([350750110]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([350750110]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.6
Multiply -λ⋅0.
Step 1.4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([350750110]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([350750110]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([350750110]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.7
Multiply -λ⋅0.
Step 1.4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([350750110]+[-λ000-λ00λ-λ⋅0-λ⋅1])
Step 1.4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([350750110]+[-λ000-λ00-λ⋅0-λ⋅1])
p(λ)=determinant([350750110]+[-λ000-λ00-λ⋅0-λ⋅1])
Step 1.4.1.2.8
Multiply -λ⋅0.
Step 1.4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([350750110]+[-λ000-λ000λ-λ⋅1])
Step 1.4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([350750110]+[-λ000-λ000-λ⋅1])
p(λ)=determinant([350750110]+[-λ000-λ000-λ⋅1])
Step 1.4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([350750110]+[-λ000-λ000-λ])
p(λ)=determinant([350750110]+[-λ000-λ000-λ])
p(λ)=determinant([350750110]+[-λ000-λ000-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[3-λ5+00+07+05-λ0+01+01+00-λ]
Step 1.4.3
Simplify each element.
Step 1.4.3.1
Add 5 and 0.
p(λ)=determinant[3-λ50+07+05-λ0+01+01+00-λ]
Step 1.4.3.2
Add 0 and 0.
p(λ)=determinant[3-λ507+05-λ0+01+01+00-λ]
Step 1.4.3.3
Add 7 and 0.
p(λ)=determinant[3-λ5075-λ0+01+01+00-λ]
Step 1.4.3.4
Add 0 and 0.
p(λ)=determinant[3-λ5075-λ01+01+00-λ]
Step 1.4.3.5
Add 1 and 0.
p(λ)=determinant[3-λ5075-λ011+00-λ]
Step 1.4.3.6
Add 1 and 0.
p(λ)=determinant[3-λ5075-λ0110-λ]
Step 1.4.3.7
Subtract λ from 0.
p(λ)=determinant[3-λ5075-λ011-λ]
p(λ)=determinant[3-λ5075-λ011-λ]
p(λ)=determinant[3-λ5075-λ011-λ]
Step 1.5
Find the determinant.
Step 1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 3 by its cofactor and add.
Step 1.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.1.3
The minor for a13 is the determinant with row 1 and column 3 deleted.
|75-λ11|
Step 1.5.1.4
Multiply element a13 by its cofactor.
0|75-λ11|
Step 1.5.1.5
The minor for a23 is the determinant with row 2 and column 3 deleted.
|3-λ511|
Step 1.5.1.6
Multiply element a23 by its cofactor.
0|3-λ511|
Step 1.5.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|3-λ575-λ|
Step 1.5.1.8
Multiply element a33 by its cofactor.
-λ|3-λ575-λ|
Step 1.5.1.9
Add the terms together.
p(λ)=0|75-λ11|+0|3-λ511|-λ|3-λ575-λ|
p(λ)=0|75-λ11|+0|3-λ511|-λ|3-λ575-λ|
Step 1.5.2
Multiply 0 by |75-λ11|.
p(λ)=0+0|3-λ511|-λ|3-λ575-λ|
Step 1.5.3
Multiply 0 by |3-λ511|.
p(λ)=0+0-λ|3-λ575-λ|
Step 1.5.4
Evaluate |3-λ575-λ|.
Step 1.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=0+0-λ((3-λ)(5-λ)-7⋅5)
Step 1.5.4.2
Simplify the determinant.
Step 1.5.4.2.1
Simplify each term.
Step 1.5.4.2.1.1
Expand (3-λ)(5-λ) using the FOIL Method.
Step 1.5.4.2.1.1.1
Apply the distributive property.
p(λ)=0+0-λ(3(5-λ)-λ(5-λ)-7⋅5)
Step 1.5.4.2.1.1.2
Apply the distributive property.
p(λ)=0+0-λ(3⋅5+3(-λ)-λ(5-λ)-7⋅5)
Step 1.5.4.2.1.1.3
Apply the distributive property.
p(λ)=0+0-λ(3⋅5+3(-λ)-λ⋅5-λ(-λ)-7⋅5)
p(λ)=0+0-λ(3⋅5+3(-λ)-λ⋅5-λ(-λ)-7⋅5)
Step 1.5.4.2.1.2
Simplify and combine like terms.
Step 1.5.4.2.1.2.1
Simplify each term.
Step 1.5.4.2.1.2.1.1
Multiply 3 by 5.
p(λ)=0+0-λ(15+3(-λ)-λ⋅5-λ(-λ)-7⋅5)
Step 1.5.4.2.1.2.1.2
Multiply -1 by 3.
p(λ)=0+0-λ(15-3λ-λ⋅5-λ(-λ)-7⋅5)
Step 1.5.4.2.1.2.1.3
Multiply 5 by -1.
p(λ)=0+0-λ(15-3λ-5λ-λ(-λ)-7⋅5)
Step 1.5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=0+0-λ(15-3λ-5λ-1⋅-1λ⋅λ-7⋅5)
Step 1.5.4.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 1.5.4.2.1.2.1.5.1
Move λ.
p(λ)=0+0-λ(15-3λ-5λ-1⋅-1(λ⋅λ)-7⋅5)
Step 1.5.4.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=0+0-λ(15-3λ-5λ-1⋅-1λ2-7⋅5)
p(λ)=0+0-λ(15-3λ-5λ-1⋅-1λ2-7⋅5)
Step 1.5.4.2.1.2.1.6
Multiply -1 by -1.
p(λ)=0+0-λ(15-3λ-5λ+1λ2-7⋅5)
Step 1.5.4.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=0+0-λ(15-3λ-5λ+λ2-7⋅5)
p(λ)=0+0-λ(15-3λ-5λ+λ2-7⋅5)
Step 1.5.4.2.1.2.2
Subtract 5λ from -3λ.
p(λ)=0+0-λ(15-8λ+λ2-7⋅5)
p(λ)=0+0-λ(15-8λ+λ2-7⋅5)
Step 1.5.4.2.1.3
Multiply -7 by 5.
p(λ)=0+0-λ(15-8λ+λ2-35)
p(λ)=0+0-λ(15-8λ+λ2-35)
Step 1.5.4.2.2
Subtract 35 from 15.
p(λ)=0+0-λ(-8λ+λ2-20)
Step 1.5.4.2.3
Reorder -8λ and λ2.
p(λ)=0+0-λ(λ2-8λ-20)
p(λ)=0+0-λ(λ2-8λ-20)
p(λ)=0+0-λ(λ2-8λ-20)
Step 1.5.5
Simplify the determinant.
Step 1.5.5.1
Combine the opposite terms in 0+0-λ(λ2-8λ-20).
Step 1.5.5.1.1
Add 0 and 0.
p(λ)=0-λ(λ2-8λ-20)
Step 1.5.5.1.2
Subtract λ(λ2-8λ-20) from 0.
p(λ)=-λ(λ2-8λ-20)
p(λ)=-λ(λ2-8λ-20)
Step 1.5.5.2
Apply the distributive property.
p(λ)=-λ⋅λ2-λ(-8λ)-λ⋅-20
Step 1.5.5.3
Simplify.
Step 1.5.5.3.1
Multiply λ by λ2 by adding the exponents.
Step 1.5.5.3.1.1
Move λ2.
p(λ)=-(λ2λ)-λ(-8λ)-λ⋅-20
Step 1.5.5.3.1.2
Multiply λ2 by λ.
Step 1.5.5.3.1.2.1
Raise λ to the power of 1.
p(λ)=-(λ2λ1)-λ(-8λ)-λ⋅-20
Step 1.5.5.3.1.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-λ2+1-λ(-8λ)-λ⋅-20
p(λ)=-λ2+1-λ(-8λ)-λ⋅-20
Step 1.5.5.3.1.3
Add 2 and 1.
p(λ)=-λ3-λ(-8λ)-λ⋅-20
p(λ)=-λ3-λ(-8λ)-λ⋅-20
Step 1.5.5.3.2
Rewrite using the commutative property of multiplication.
p(λ)=-λ3-1⋅-8λ⋅λ-λ⋅-20
Step 1.5.5.3.3
Multiply -20 by -1.
p(λ)=-λ3-1⋅-8λ⋅λ+20λ
p(λ)=-λ3-1⋅-8λ⋅λ+20λ
Step 1.5.5.4
Simplify each term.
Step 1.5.5.4.1
Multiply λ by λ by adding the exponents.
Step 1.5.5.4.1.1
Move λ.
p(λ)=-λ3-1⋅-8(λ⋅λ)+20λ
Step 1.5.5.4.1.2
Multiply λ by λ.
p(λ)=-λ3-1⋅-8λ2+20λ
p(λ)=-λ3-1⋅-8λ2+20λ
Step 1.5.5.4.2
Multiply -1 by -8.
p(λ)=-λ3+8λ2+20λ
p(λ)=-λ3+8λ2+20λ
p(λ)=-λ3+8λ2+20λ
p(λ)=-λ3+8λ2+20λ
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+8λ2+20λ=0
Step 1.7
Solve for λ.
Step 1.7.1
Factor the left side of the equation.
Step 1.7.1.1
Factor -λ out of -λ3+8λ2+20λ.
Step 1.7.1.1.1
Factor -λ out of -λ3.
-λ⋅λ2+8λ2+20λ=0
Step 1.7.1.1.2
Factor -λ out of 8λ2.
-λ⋅λ2-λ(-8λ)+20λ=0
Step 1.7.1.1.3
Factor -λ out of 20λ.
-λ⋅λ2-λ(-8λ)-λ⋅-20=0
Step 1.7.1.1.4
Factor -λ out of -λ(λ2)-λ(-8λ).
-λ(λ2-8λ)-λ⋅-20=0
Step 1.7.1.1.5
Factor -λ out of -λ(λ2-8λ)-λ(-20).
-λ(λ2-8λ-20)=0
-λ(λ2-8λ-20)=0
Step 1.7.1.2
Factor.
Step 1.7.1.2.1
Factor λ2-8λ-20 using the AC method.
Step 1.7.1.2.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -20 and whose sum is -8.
-10,2
Step 1.7.1.2.1.2
Write the factored form using these integers.
-λ((λ-10)(λ+2))=0
-λ((λ-10)(λ+2))=0
Step 1.7.1.2.2
Remove unnecessary parentheses.
-λ(λ-10)(λ+2)=0
-λ(λ-10)(λ+2)=0
-λ(λ-10)(λ+2)=0
Step 1.7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ=0
λ-10=0
λ+2=0
Step 1.7.3
Set λ equal to 0.
λ=0
Step 1.7.4
Set λ-10 equal to 0 and solve for λ.
Step 1.7.4.1
Set λ-10 equal to 0.
λ-10=0
Step 1.7.4.2
Add 10 to both sides of the equation.
λ=10
λ=10
Step 1.7.5
Set λ+2 equal to 0 and solve for λ.
Step 1.7.5.1
Set λ+2 equal to 0.
λ+2=0
Step 1.7.5.2
Subtract 2 from both sides of the equation.
λ=-2
λ=-2
Step 1.7.6
The final solution is all the values that make -λ(λ-10)(λ+2)=0 true.
λ=0,10,-2
λ=0,10,-2
λ=0,10,-2
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI3)
Step 3
Step 3.1
Substitute the known values into the formula.
N([350750110]+0[100010001])
Step 3.2
Simplify.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 0 by each element of the matrix.
[350750110]+[0⋅10⋅00⋅00⋅00⋅10⋅00⋅00⋅00⋅1]
Step 3.2.1.2
Simplify each element in the matrix.
Step 3.2.1.2.1
Multiply 0 by 1.
[350750110]+[00⋅00⋅00⋅00⋅10⋅00⋅00⋅00⋅1]
Step 3.2.1.2.2
Multiply 0 by 0.
[350750110]+[000⋅00⋅00⋅10⋅00⋅00⋅00⋅1]
Step 3.2.1.2.3
Multiply 0 by 0.
[350750110]+[0000⋅00⋅10⋅00⋅00⋅00⋅1]
Step 3.2.1.2.4
Multiply 0 by 0.
[350750110]+[00000⋅10⋅00⋅00⋅00⋅1]
Step 3.2.1.2.5
Multiply 0 by 1.
[350750110]+[000000⋅00⋅00⋅00⋅1]
Step 3.2.1.2.6
Multiply 0 by 0.
[350750110]+[0000000⋅00⋅00⋅1]
Step 3.2.1.2.7
Multiply 0 by 0.
[350750110]+[00000000⋅00⋅1]
Step 3.2.1.2.8
Multiply 0 by 0.
[350750110]+[000000000⋅1]
Step 3.2.1.2.9
Multiply 0 by 1.
[350750110]+[000000000]
[350750110]+[000000000]
[350750110]+[000000000]
Step 3.2.2
Adding any matrix to a null matrix is the matrix itself.
Step 3.2.2.1
Add the corresponding elements.
[3+05+00+07+05+00+01+01+00+0]
Step 3.2.2.2
Simplify each element.
Step 3.2.2.2.1
Add 3 and 0.
[35+00+07+05+00+01+01+00+0]
Step 3.2.2.2.2
Add 5 and 0.
[350+07+05+00+01+01+00+0]
Step 3.2.2.2.3
Add 0 and 0.
[3507+05+00+01+01+00+0]
Step 3.2.2.2.4
Add 7 and 0.
[35075+00+01+01+00+0]
Step 3.2.2.2.5
Add 5 and 0.
[350750+01+01+00+0]
Step 3.2.2.2.6
Add 0 and 0.
[3507501+01+00+0]
Step 3.2.2.2.7
Add 1 and 0.
[35075011+00+0]
Step 3.2.2.2.8
Add 1 and 0.
[350750110+0]
Step 3.2.2.2.9
Add 0 and 0.
[350750110]
[350750110]
[350750110]
[350750110]
Step 3.3
Find the null space when λ=0.
Step 3.3.1
Write as an augmented matrix for Ax=0.
[350075001100]
Step 3.3.2
Find the reduced row echelon form.
Step 3.3.2.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
Step 3.3.2.1.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
[3353030375001100]
Step 3.3.2.1.2
Simplify R1.
[1530075001100]
[1530075001100]
Step 3.3.2.2
Perform the row operation R2=R2-7R1 to make the entry at 2,1 a 0.
Step 3.3.2.2.1
Perform the row operation R2=R2-7R1 to make the entry at 2,1 a 0.
[153007-7⋅15-7(53)0-7⋅00-7⋅01100]
Step 3.3.2.2.2
Simplify R2.
[153000-203001100]
[153000-203001100]
Step 3.3.2.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Step 3.3.2.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[153000-203001-11-530-00-0]
Step 3.3.2.3.2
Simplify R3.
[153000-203000-2300]
[153000-203000-2300]
Step 3.3.2.4
Multiply each element of R2 by -320 to make the entry at 2,2 a 1.
Step 3.3.2.4.1
Multiply each element of R2 by -320 to make the entry at 2,2 a 1.
[15300-320⋅0-320(-203)-320⋅0-320⋅00-2300]
Step 3.3.2.4.2
Simplify R2.
[1530001000-2300]
[1530001000-2300]
Step 3.3.2.5
Perform the row operation R3=R3+23R2 to make the entry at 3,2 a 0.
Step 3.3.2.5.1
Perform the row operation R3=R3+23R2 to make the entry at 3,2 a 0.
[1530001000+23⋅0-23+23⋅10+23⋅00+23⋅0]
Step 3.3.2.5.2
Simplify R3.
[1530001000000]
[1530001000000]
Step 3.3.2.6
Perform the row operation R1=R1-53R2 to make the entry at 1,2 a 0.
Step 3.3.2.6.1
Perform the row operation R1=R1-53R2 to make the entry at 1,2 a 0.
[1-53⋅053-53⋅10-53⋅00-53⋅001000000]
Step 3.3.2.6.2
Simplify R1.
[100001000000]
[100001000000]
[100001000000]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x=0
y=0
0=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[00z]
Step 3.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[001]
Step 3.3.6
Write as a solution set.
{z[001]|z∈R}
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[001]}
{[001]}
{[001]}
Step 4
Step 4.1
Substitute the known values into the formula.
N([350750110]-10[100010001])
Step 4.2
Simplify.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply -10 by each element of the matrix.
[350750110]+[-10⋅1-10⋅0-10⋅0-10⋅0-10⋅1-10⋅0-10⋅0-10⋅0-10⋅1]
Step 4.2.1.2
Simplify each element in the matrix.
Step 4.2.1.2.1
Multiply -10 by 1.
[350750110]+[-10-10⋅0-10⋅0-10⋅0-10⋅1-10⋅0-10⋅0-10⋅0-10⋅1]
Step 4.2.1.2.2
Multiply -10 by 0.
[350750110]+[-100-10⋅0-10⋅0-10⋅1-10⋅0-10⋅0-10⋅0-10⋅1]
Step 4.2.1.2.3
Multiply -10 by 0.
[350750110]+[-1000-10⋅0-10⋅1-10⋅0-10⋅0-10⋅0-10⋅1]
Step 4.2.1.2.4
Multiply -10 by 0.
[350750110]+[-10000-10⋅1-10⋅0-10⋅0-10⋅0-10⋅1]
Step 4.2.1.2.5
Multiply -10 by 1.
[350750110]+[-10000-10-10⋅0-10⋅0-10⋅0-10⋅1]
Step 4.2.1.2.6
Multiply -10 by 0.
[350750110]+[-10000-100-10⋅0-10⋅0-10⋅1]
Step 4.2.1.2.7
Multiply -10 by 0.
[350750110]+[-10000-1000-10⋅0-10⋅1]
Step 4.2.1.2.8
Multiply -10 by 0.
[350750110]+[-10000-10000-10⋅1]
Step 4.2.1.2.9
Multiply -10 by 1.
[350750110]+[-10000-10000-10]
[350750110]+[-10000-10000-10]
[350750110]+[-10000-10000-10]
Step 4.2.2
Add the corresponding elements.
[3-105+00+07+05-100+01+01+00-10]
Step 4.2.3
Simplify each element.
Step 4.2.3.1
Subtract 10 from 3.
[-75+00+07+05-100+01+01+00-10]
Step 4.2.3.2
Add 5 and 0.
[-750+07+05-100+01+01+00-10]
Step 4.2.3.3
Add 0 and 0.
[-7507+05-100+01+01+00-10]
Step 4.2.3.4
Add 7 and 0.
[-75075-100+01+01+00-10]
Step 4.2.3.5
Subtract 10 from 5.
[-7507-50+01+01+00-10]
Step 4.2.3.6
Add 0 and 0.
[-7507-501+01+00-10]
Step 4.2.3.7
Add 1 and 0.
[-7507-5011+00-10]
Step 4.2.3.8
Add 1 and 0.
[-7507-50110-10]
Step 4.2.3.9
Subtract 10 from 0.
[-7507-5011-10]
[-7507-5011-10]
[-7507-5011-10]
Step 4.3
Find the null space when λ=10.
Step 4.3.1
Write as an augmented matrix for Ax=0.
[-75007-50011-100]
Step 4.3.2
Find the reduced row echelon form.
Step 4.3.2.1
Multiply each element of R1 by -17 to make the entry at 1,1 a 1.
Step 4.3.2.1.1
Multiply each element of R1 by -17 to make the entry at 1,1 a 1.
[-17⋅-7-17⋅5-17⋅0-17⋅07-50011-100]
Step 4.3.2.1.2
Simplify R1.
[1-57007-50011-100]
[1-57007-50011-100]
Step 4.3.2.2
Perform the row operation R2=R2-7R1 to make the entry at 2,1 a 0.
Step 4.3.2.2.1
Perform the row operation R2=R2-7R1 to make the entry at 2,1 a 0.
[1-57007-7⋅1-5-7(-57)0-7⋅00-7⋅011-100]
Step 4.3.2.2.2
Simplify R2.
[1-5700000011-100]
[1-5700000011-100]
Step 4.3.2.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Step 4.3.2.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1-570000001-11+57-10-00-0]
Step 4.3.2.3.2
Simplify R3.
[1-570000000127-100]
[1-570000000127-100]
Step 4.3.2.4
Swap R3 with R2 to put a nonzero entry at 2,2.
[1-57000127-1000000]
Step 4.3.2.5
Multiply each element of R2 by 712 to make the entry at 2,2 a 1.
Step 4.3.2.5.1
Multiply each element of R2 by 712 to make the entry at 2,2 a 1.
[1-5700712⋅0712⋅127712⋅-10712⋅00000]
Step 4.3.2.5.2
Simplify R2.
[1-570001-35600000]
[1-570001-35600000]
Step 4.3.2.6
Perform the row operation R1=R1+57R2 to make the entry at 1,2 a 0.
Step 4.3.2.6.1
Perform the row operation R1=R1+57R2 to make the entry at 1,2 a 0.
[1+57⋅0-57+57⋅10+57(-356)0+57⋅001-35600000]
Step 4.3.2.6.2
Simplify R1.
[10-256001-35600000]
[10-256001-35600000]
[10-256001-35600000]
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x-256z=0
y-356z=0
0=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[25z635z6z]
Step 4.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[2563561]
Step 4.3.6
Write as a solution set.
{z[2563561]|z∈R}
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[2563561]}
{[2563561]}
{[2563561]}
Step 5
Step 5.1
Substitute the known values into the formula.
N([350750110]+2[100010001])
Step 5.2
Simplify.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Multiply 2 by each element of the matrix.
[350750110]+[2⋅12⋅02⋅02⋅02⋅12⋅02⋅02⋅02⋅1]
Step 5.2.1.2
Simplify each element in the matrix.
Step 5.2.1.2.1
Multiply 2 by 1.
[350750110]+[22⋅02⋅02⋅02⋅12⋅02⋅02⋅02⋅1]
Step 5.2.1.2.2
Multiply 2 by 0.
[350750110]+[202⋅02⋅02⋅12⋅02⋅02⋅02⋅1]
Step 5.2.1.2.3
Multiply 2 by 0.
[350750110]+[2002⋅02⋅12⋅02⋅02⋅02⋅1]
Step 5.2.1.2.4
Multiply 2 by 0.
[350750110]+[20002⋅12⋅02⋅02⋅02⋅1]
Step 5.2.1.2.5
Multiply 2 by 1.
[350750110]+[200022⋅02⋅02⋅02⋅1]
Step 5.2.1.2.6
Multiply 2 by 0.
[350750110]+[2000202⋅02⋅02⋅1]
Step 5.2.1.2.7
Multiply 2 by 0.
[350750110]+[20002002⋅02⋅1]
Step 5.2.1.2.8
Multiply 2 by 0.
[350750110]+[200020002⋅1]
Step 5.2.1.2.9
Multiply 2 by 1.
[350750110]+[200020002]
[350750110]+[200020002]
[350750110]+[200020002]
Step 5.2.2
Add the corresponding elements.
[3+25+00+07+05+20+01+01+00+2]
Step 5.2.3
Simplify each element.
Step 5.2.3.1
Add 3 and 2.
[55+00+07+05+20+01+01+00+2]
Step 5.2.3.2
Add 5 and 0.
[550+07+05+20+01+01+00+2]
Step 5.2.3.3
Add 0 and 0.
[5507+05+20+01+01+00+2]
Step 5.2.3.4
Add 7 and 0.
[55075+20+01+01+00+2]
Step 5.2.3.5
Add 5 and 2.
[550770+01+01+00+2]
Step 5.2.3.6
Add 0 and 0.
[5507701+01+00+2]
Step 5.2.3.7
Add 1 and 0.
[55077011+00+2]
Step 5.2.3.8
Add 1 and 0.
[550770110+2]
Step 5.2.3.9
Add 0 and 2.
[550770112]
[550770112]
[550770112]
Step 5.3
Find the null space when λ=-2.
Step 5.3.1
Write as an augmented matrix for Ax=0.
[550077001120]
Step 5.3.2
Find the reduced row echelon form.
Step 5.3.2.1
Multiply each element of R1 by 15 to make the entry at 1,1 a 1.
Step 5.3.2.1.1
Multiply each element of R1 by 15 to make the entry at 1,1 a 1.
[5555050577001120]
Step 5.3.2.1.2
Simplify R1.
[110077001120]
[110077001120]
Step 5.3.2.2
Perform the row operation R2=R2-7R1 to make the entry at 2,1 a 0.
Step 5.3.2.2.1
Perform the row operation R2=R2-7R1 to make the entry at 2,1 a 0.
[11007-7⋅17-7⋅10-7⋅00-7⋅01120]
Step 5.3.2.2.2
Simplify R2.
[110000001120]
[110000001120]
Step 5.3.2.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Step 5.3.2.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[110000001-11-12-00-0]
Step 5.3.2.3.2
Simplify R3.
[110000000020]
[110000000020]
Step 5.3.2.4
Swap R3 with R2 to put a nonzero entry at 2,3.
[110000200000]
Step 5.3.2.5
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
Step 5.3.2.5.1
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
[1100020222020000]
Step 5.3.2.5.2
Simplify R2.
[110000100000]
[110000100000]
[110000100000]
Step 5.3.3
Use the result matrix to declare the final solution to the system of equations.
x+y=0
z=0
0=0
Step 5.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[-yy0]
Step 5.3.5
Write the solution as a linear combination of vectors.
[xyz]=y[-110]
Step 5.3.6
Write as a solution set.
{y[-110]|y∈R}
Step 5.3.7
The solution is the set of vectors created from the free variables of the system.
{[-110]}
{[-110]}
{[-110]}
Step 6
The eigenspace of A is the list of the vector space for each eigenvalue.
{[001],[2563561],[-110]}