Examples
[3246][3246]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(A−λI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Step 3.1
Substitute [3246][3246] for AA.
p(λ)=determinant([3246]-λI2)p(λ)=determinant([3246]−λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([3246]-λ[1001])p(λ)=determinant([3246]−λ[1001])
p(λ)=determinant([3246]-λ[1001])p(λ)=determinant([3246]−λ[1001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([3246]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([3246]+[−λ⋅1−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([3246]+[-λ-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([3246]+[−λ−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.2.1
Multiply 00 by -1−1.
p(λ)=determinant([3246]+[-λ0λ-λ⋅0-λ⋅1])p(λ)=determinant([3246]+[−λ0λ−λ⋅0−λ⋅1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([3246]+[-λ0-λ⋅0-λ⋅1])p(λ)=determinant([3246]+[−λ0−λ⋅0−λ⋅1])
p(λ)=determinant([3246]+[-λ0-λ⋅0-λ⋅1])p(λ)=determinant([3246]+[−λ0−λ⋅0−λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.3.1
Multiply 00 by -1−1.
p(λ)=determinant([3246]+[-λ00λ-λ⋅1])p(λ)=determinant([3246]+[−λ00λ−λ⋅1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([3246]+[-λ00-λ⋅1])p(λ)=determinant([3246]+[−λ00−λ⋅1])
p(λ)=determinant([3246]+[-λ00-λ⋅1])p(λ)=determinant([3246]+[−λ00−λ⋅1])
Step 4.1.2.4
Multiply -1−1 by 11.
p(λ)=determinant([3246]+[-λ00-λ])p(λ)=determinant([3246]+[−λ00−λ])
p(λ)=determinant([3246]+[-λ00-λ])p(λ)=determinant([3246]+[−λ00−λ])
p(λ)=determinant([3246]+[-λ00-λ])p(λ)=determinant([3246]+[−λ00−λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[3-λ2+04+06-λ]p(λ)=determinant[3−λ2+04+06−λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 2 and 0.
p(λ)=determinant[3-λ24+06-λ]
Step 4.3.2
Add 4 and 0.
p(λ)=determinant[3-λ246-λ]
p(λ)=determinant[3-λ246-λ]
p(λ)=determinant[3-λ246-λ]
Step 5
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(3-λ)(6-λ)-4⋅2
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Expand (3-λ)(6-λ) using the FOIL Method.
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=3(6-λ)-λ(6-λ)-4⋅2
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=3⋅6+3(-λ)-λ(6-λ)-4⋅2
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=3⋅6+3(-λ)-λ⋅6-λ(-λ)-4⋅2
p(λ)=3⋅6+3(-λ)-λ⋅6-λ(-λ)-4⋅2
Step 5.2.1.2
Simplify and combine like terms.
Step 5.2.1.2.1
Simplify each term.
Step 5.2.1.2.1.1
Multiply 3 by 6.
p(λ)=18+3(-λ)-λ⋅6-λ(-λ)-4⋅2
Step 5.2.1.2.1.2
Multiply -1 by 3.
p(λ)=18-3λ-λ⋅6-λ(-λ)-4⋅2
Step 5.2.1.2.1.3
Multiply 6 by -1.
p(λ)=18-3λ-6λ-λ(-λ)-4⋅2
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=18-3λ-6λ-1⋅-1λ⋅λ-4⋅2
Step 5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.2.1.2.1.5.1
Move λ.
p(λ)=18-3λ-6λ-1⋅-1(λ⋅λ)-4⋅2
Step 5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=18-3λ-6λ-1⋅-1λ2-4⋅2
p(λ)=18-3λ-6λ-1⋅-1λ2-4⋅2
Step 5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=18-3λ-6λ+1λ2-4⋅2
Step 5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=18-3λ-6λ+λ2-4⋅2
p(λ)=18-3λ-6λ+λ2-4⋅2
Step 5.2.1.2.2
Subtract 6λ from -3λ.
p(λ)=18-9λ+λ2-4⋅2
p(λ)=18-9λ+λ2-4⋅2
Step 5.2.1.3
Multiply -4 by 2.
p(λ)=18-9λ+λ2-8
p(λ)=18-9λ+λ2-8
Step 5.2.2
Subtract 8 from 18.
p(λ)=-9λ+λ2+10
Step 5.2.3
Reorder -9λ and λ2.
p(λ)=λ2-9λ+10
p(λ)=λ2-9λ+10
p(λ)=λ2-9λ+10
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-9λ+10=0
Step 7
Step 7.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 7.2
Substitute the values a=1, b=-9, and c=10 into the quadratic formula and solve for λ.
9±√(-9)2-4⋅(1⋅10)2⋅1
Step 7.3
Simplify.
Step 7.3.1
Simplify the numerator.
Step 7.3.1.1
Raise -9 to the power of 2.
λ=9±√81-4⋅1⋅102⋅1
Step 7.3.1.2
Multiply -4⋅1⋅10.
Step 7.3.1.2.1
Multiply -4 by 1.
λ=9±√81-4⋅102⋅1
Step 7.3.1.2.2
Multiply -4 by 10.
λ=9±√81-402⋅1
λ=9±√81-402⋅1
Step 7.3.1.3
Subtract 40 from 81.
λ=9±√412⋅1
λ=9±√412⋅1
Step 7.3.2
Multiply 2 by 1.
λ=9±√412
λ=9±√412
Step 7.4
The final answer is the combination of both solutions.
λ=9+√412,9-√412
λ=9+√412,9-√412
Step 8
The result can be shown in multiple forms.
Exact Form:
λ=9+√412,9-√412
Decimal Form:
λ=7.70156211…,1.29843788…