Examples

Find the Characteristic Equation
[3246][3246]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2).
Tap for more steps...
Step 3.1
Substitute [3246][3246] for AA.
p(λ)=determinant([3246]-λI2)p(λ)=determinant([3246]λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([3246]-λ[1001])p(λ)=determinant([3246]λ[1001])
p(λ)=determinant([3246]-λ[1001])p(λ)=determinant([3246]λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([3246]+[-λ1-λ0-λ0-λ1])p(λ)=determinant([3246]+[λ1λ0λ0λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([3246]+[-λ-λ0-λ0-λ1])p(λ)=determinant([3246]+[λλ0λ0λ1])
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([3246]+[-λ0λ-λ0-λ1])p(λ)=determinant([3246]+[λ0λλ0λ1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([3246]+[-λ0-λ0-λ1])p(λ)=determinant([3246]+[λ0λ0λ1])
p(λ)=determinant([3246]+[-λ0-λ0-λ1])p(λ)=determinant([3246]+[λ0λ0λ1])
Step 4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([3246]+[-λ00λ-λ1])p(λ)=determinant([3246]+[λ00λλ1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([3246]+[-λ00-λ1])p(λ)=determinant([3246]+[λ00λ1])
p(λ)=determinant([3246]+[-λ00-λ1])p(λ)=determinant([3246]+[λ00λ1])
Step 4.1.2.4
Multiply -11 by 11.
p(λ)=determinant([3246]+[-λ00-λ])p(λ)=determinant([3246]+[λ00λ])
p(λ)=determinant([3246]+[-λ00-λ])p(λ)=determinant([3246]+[λ00λ])
p(λ)=determinant([3246]+[-λ00-λ])p(λ)=determinant([3246]+[λ00λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[3-λ2+04+06-λ]p(λ)=determinant[3λ2+04+06λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 22 and 00.
p(λ)=determinant[3-λ24+06-λ]p(λ)=determinant[3λ24+06λ]
Step 4.3.2
Add 44 and 00.
p(λ)=determinant[3-λ246-λ]p(λ)=determinant[3λ246λ]
p(λ)=determinant[3-λ246-λ]p(λ)=determinant[3λ246λ]
p(λ)=determinant[3-λ246-λ]p(λ)=determinant[3λ246λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
p(λ)=(3-λ)(6-λ)-42p(λ)=(3λ)(6λ)42
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Expand (3-λ)(6-λ)(3λ)(6λ) using the FOIL Method.
Tap for more steps...
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=3(6-λ)-λ(6-λ)-42p(λ)=3(6λ)λ(6λ)42
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=36+3(-λ)-λ(6-λ)-42p(λ)=36+3(λ)λ(6λ)42
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=36+3(-λ)-λ6-λ(-λ)-42p(λ)=36+3(λ)λ6λ(λ)42
p(λ)=36+3(-λ)-λ6-λ(-λ)-42p(λ)=36+3(λ)λ6λ(λ)42
Step 5.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.2.1.1
Multiply 33 by 66.
p(λ)=18+3(-λ)-λ6-λ(-λ)-42p(λ)=18+3(λ)λ6λ(λ)42
Step 5.2.1.2.1.2
Multiply -11 by 33.
p(λ)=18-3λ-λ6-λ(-λ)-42p(λ)=183λλ6λ(λ)42
Step 5.2.1.2.1.3
Multiply 66 by -11.
p(λ)=18-3λ-6λ-λ(-λ)-42p(λ)=183λ6λλ(λ)42
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=18-3λ-6λ-1-1λλ-42p(λ)=183λ6λ11λλ42
Step 5.2.1.2.1.5
Multiply λλ by λλ by adding the exponents.
Tap for more steps...
Step 5.2.1.2.1.5.1
Move λλ.
p(λ)=18-3λ-6λ-1-1(λλ)-42p(λ)=183λ6λ11(λλ)42
Step 5.2.1.2.1.5.2
Multiply λλ by λλ.
p(λ)=18-3λ-6λ-1-1λ2-42p(λ)=183λ6λ11λ242
p(λ)=18-3λ-6λ-1-1λ2-42p(λ)=183λ6λ11λ242
Step 5.2.1.2.1.6
Multiply -11 by -11.
p(λ)=18-3λ-6λ+1λ2-42p(λ)=183λ6λ+1λ242
Step 5.2.1.2.1.7
Multiply λ2λ2 by 11.
p(λ)=18-3λ-6λ+λ2-42p(λ)=183λ6λ+λ242
p(λ)=18-3λ-6λ+λ2-42p(λ)=183λ6λ+λ242
Step 5.2.1.2.2
Subtract 6λ6λ from -3λ.
p(λ)=18-9λ+λ2-42
p(λ)=18-9λ+λ2-42
Step 5.2.1.3
Multiply -4 by 2.
p(λ)=18-9λ+λ2-8
p(λ)=18-9λ+λ2-8
Step 5.2.2
Subtract 8 from 18.
p(λ)=-9λ+λ2+10
Step 5.2.3
Reorder -9λ and λ2.
p(λ)=λ2-9λ+10
p(λ)=λ2-9λ+10
p(λ)=λ2-9λ+10
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay