Examples

Find the Vertex Form
4x2+y2-16x+2y+13=0
Step 1
Subtract 13 from both sides of the equation.
4x2+y2-16x+2y=-13
Step 2
Complete the square for 4x2-16x.
Tap for more steps...
Step 2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=4
b=-16
c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 2.3.1
Substitute the values of a and b into the formula d=b2a.
d=-1624
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor of -16 and 2.
Tap for more steps...
Step 2.3.2.1.1
Factor 2 out of -16.
d=2-824
Step 2.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.1.2.1
Factor 2 out of 24.
d=2-82(4)
Step 2.3.2.1.2.2
Cancel the common factor.
d=2-824
Step 2.3.2.1.2.3
Rewrite the expression.
d=-84
d=-84
d=-84
Step 2.3.2.2
Cancel the common factor of -8 and 4.
Tap for more steps...
Step 2.3.2.2.1
Factor 4 out of -8.
d=4-24
Step 2.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.2.2.1
Factor 4 out of 4.
d=4-24(1)
Step 2.3.2.2.2.2
Cancel the common factor.
d=4-241
Step 2.3.2.2.2.3
Rewrite the expression.
d=-21
Step 2.3.2.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
d=-2
Step 2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-16)244
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise -16 to the power of 2.
e=0-25644
Step 2.4.2.1.2
Multiply 4 by 4.
e=0-25616
Step 2.4.2.1.3
Divide 256 by 16.
e=0-116
Step 2.4.2.1.4
Multiply -1 by 16.
e=0-16
e=0-16
Step 2.4.2.2
Subtract 16 from 0.
e=-16
e=-16
e=-16
Step 2.5
Substitute the values of a, d, and e into the vertex form 4(x-2)2-16.
4(x-2)2-16
4(x-2)2-16
Step 3
Substitute 4(x-2)2-16 for 4x2-16x in the equation 4x2+y2-16x+2y=-13.
4(x-2)2-16+y2+2y=-13
Step 4
Move -16 to the right side of the equation by adding 16 to both sides.
4(x-2)2+y2+2y=-13+16
Step 5
Complete the square for y2+2y.
Tap for more steps...
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=2
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=221
Step 5.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor.
d=221
Step 5.3.2.2
Rewrite the expression.
d=1
d=1
d=1
Step 5.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-2241
Step 5.4.2
Simplify the right side.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Raise 2 to the power of 2.
e=0-441
Step 5.4.2.1.2
Multiply 4 by 1.
e=0-44
Step 5.4.2.1.3
Cancel the common factor of 4.
Tap for more steps...
Step 5.4.2.1.3.1
Cancel the common factor.
e=0-44
Step 5.4.2.1.3.2
Rewrite the expression.
e=0-11
e=0-11
Step 5.4.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 5.4.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 5.5
Substitute the values of a, d, and e into the vertex form (y+1)2-1.
(y+1)2-1
(y+1)2-1
Step 6
Substitute (y+1)2-1 for y2+2y in the equation 4x2+y2-16x+2y=-13.
4(x-2)2+(y+1)2-1=-13+16
Step 7
Move -1 to the right side of the equation by adding 1 to both sides.
4(x-2)2+(y+1)2=-13+16+1
Step 8
Simplify -13+16+1.
Tap for more steps...
Step 8.1
Add -13 and 16.
4(x-2)2+(y+1)2=3+1
Step 8.2
Add 3 and 1.
4(x-2)2+(y+1)2=4
4(x-2)2+(y+1)2=4
Step 9
Divide each term by 4 to make the right side equal to one.
4(x-2)24+(y+1)24=44
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x-2)2+(y+1)24=1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay