Examples
(x-2)2+(y+1)24=3(x−2)2+(y+1)24=3
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Rewrite (x-2)2(x−2)2 as (x-2)(x-2)(x−2)(x−2).
(x-2)(x-2)+(y+1)24=3(x−2)(x−2)+(y+1)24=3
Step 1.1.2
Expand (x-2)(x-2)(x−2)(x−2) using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
x(x-2)-2(x-2)+(y+1)24=3x(x−2)−2(x−2)+(y+1)24=3
Step 1.1.2.2
Apply the distributive property.
x⋅x+x⋅-2-2(x-2)+(y+1)24=3x⋅x+x⋅−2−2(x−2)+(y+1)24=3
Step 1.1.2.3
Apply the distributive property.
x⋅x+x⋅-2-2x-2⋅-2+(y+1)24=3x⋅x+x⋅−2−2x−2⋅−2+(y+1)24=3
x⋅x+x⋅-2-2x-2⋅-2+(y+1)24=3x⋅x+x⋅−2−2x−2⋅−2+(y+1)24=3
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Multiply xx by xx.
x2+x⋅-2-2x-2⋅-2+(y+1)24=3x2+x⋅−2−2x−2⋅−2+(y+1)24=3
Step 1.1.3.1.2
Move -2 to the left of x.
x2-2⋅x-2x-2⋅-2+(y+1)24=3
Step 1.1.3.1.3
Multiply -2 by -2.
x2-2x-2x+4+(y+1)24=3
x2-2x-2x+4+(y+1)24=3
Step 1.1.3.2
Subtract 2x from -2x.
x2-4x+4+(y+1)24=3
x2-4x+4+(y+1)24=3
x2-4x+4+(y+1)24=3
Step 1.2
To write x2 as a fraction with a common denominator, multiply by 44.
-4x+4+x2⋅44+(y+1)24=3
Step 1.3
Simplify terms.
Step 1.3.1
Combine x2 and 44.
-4x+4+x2⋅44+(y+1)24=3
Step 1.3.2
Combine the numerators over the common denominator.
-4x+4+x2⋅4+(y+1)24=3
-4x+4+x2⋅4+(y+1)24=3
Step 1.4
Simplify the numerator.
Step 1.4.1
Move 4 to the left of x2.
-4x+4+4⋅x2+(y+1)24=3
Step 1.4.2
Rewrite (y+1)2 as (y+1)(y+1).
-4x+4+4x2+(y+1)(y+1)4=3
Step 1.4.3
Expand (y+1)(y+1) using the FOIL Method.
Step 1.4.3.1
Apply the distributive property.
-4x+4+4x2+y(y+1)+1(y+1)4=3
Step 1.4.3.2
Apply the distributive property.
-4x+4+4x2+y⋅y+y⋅1+1(y+1)4=3
Step 1.4.3.3
Apply the distributive property.
-4x+4+4x2+y⋅y+y⋅1+1y+1⋅14=3
-4x+4+4x2+y⋅y+y⋅1+1y+1⋅14=3
Step 1.4.4
Simplify and combine like terms.
Step 1.4.4.1
Simplify each term.
Step 1.4.4.1.1
Multiply y by y.
-4x+4+4x2+y2+y⋅1+1y+1⋅14=3
Step 1.4.4.1.2
Multiply y by 1.
-4x+4+4x2+y2+y+1y+1⋅14=3
Step 1.4.4.1.3
Multiply y by 1.
-4x+4+4x2+y2+y+y+1⋅14=3
Step 1.4.4.1.4
Multiply 1 by 1.
-4x+4+4x2+y2+y+y+14=3
-4x+4+4x2+y2+y+y+14=3
Step 1.4.4.2
Add y and y.
-4x+4+4x2+y2+2y+14=3
-4x+4+4x2+y2+2y+14=3
-4x+4+4x2+y2+2y+14=3
Step 1.5
To write -4x as a fraction with a common denominator, multiply by 44.
-4x⋅44+4x2+y2+2y+14+4=3
Step 1.6
Simplify terms.
Step 1.6.1
Combine -4x and 44.
-4x⋅44+4x2+y2+2y+14+4=3
Step 1.6.2
Combine the numerators over the common denominator.
-4x⋅4+4x2+y2+2y+14+4=3
-4x⋅4+4x2+y2+2y+14+4=3
Step 1.7
Multiply 4 by -4.
-16x+4x2+y2+2y+14+4=3
Step 1.8
To write 4 as a fraction with a common denominator, multiply by 44.
-16x+4x2+y2+2y+14+4⋅44=3
Step 1.9
Simplify terms.
Step 1.9.1
Combine 4 and 44.
-16x+4x2+y2+2y+14+4⋅44=3
Step 1.9.2
Combine the numerators over the common denominator.
-16x+4x2+y2+2y+1+4⋅44=3
-16x+4x2+y2+2y+1+4⋅44=3
Step 1.10
Simplify the numerator.
Step 1.10.1
Multiply 4 by 4.
-16x+4x2+y2+2y+1+164=3
Step 1.10.2
Add 1 and 16.
-16x+4x2+y2+2y+174=3
-16x+4x2+y2+2y+174=3
Step 1.11
Simplify with factoring out.
Step 1.11.1
Factor -1 out of -16x.
-(16x)+4x2+y2+2y+174=3
Step 1.11.2
Factor -1 out of 4x2.
-(16x)-(-4x2)+y2+2y+174=3
Step 1.11.3
Factor -1 out of -(16x)-(-4x2).
-(16x-4x2)+y2+2y+174=3
Step 1.11.4
Factor -1 out of y2.
-(16x-4x2)-1(-y2)+2y+174=3
Step 1.11.5
Factor -1 out of -(16x-4x2)-1(-y2).
-(16x-4x2-y2)+2y+174=3
Step 1.11.6
Factor -1 out of 2y.
-(16x-4x2-y2)-(-2y)+174=3
Step 1.11.7
Factor -1 out of -(16x-4x2-y2)-(-2y).
-(16x-4x2-y2-2y)+174=3
Step 1.11.8
Rewrite 17 as -1(-17).
-(16x-4x2-y2-2y)-1⋅-174=3
Step 1.11.9
Factor -1 out of -(16x-4x2-y2-2y)-1(-17).
-(16x-4x2-y2-2y-17)4=3
Step 1.11.10
Simplify the expression.
Step 1.11.10.1
Rewrite -(16x-4x2-y2-2y-17) as -1(16x-4x2-y2-2y-17).
-1(16x-4x2-y2-2y-17)4=3
Step 1.11.10.2
Move the negative in front of the fraction.
-16x-4x2-y2-2y-174=3
-16x-4x2-y2-2y-174=3
-16x-4x2-y2-2y-174=3
-16x-4x2-y2-2y-174=3
Step 2
Multiply both sides by 4.
-16x-4x2-y2-2y-174⋅4=3⋅4
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify -16x-4x2-y2-2y-174⋅4.
Step 3.1.1.1
Cancel the common factor of 4.
Step 3.1.1.1.1
Move the leading negative in -16x-4x2-y2-2y-174 into the numerator.
-(16x-4x2-y2-2y-17)4⋅4=3⋅4
Step 3.1.1.1.2
Cancel the common factor.
-(16x-4x2-y2-2y-17)4⋅4=3⋅4
Step 3.1.1.1.3
Rewrite the expression.
-(16x-4x2-y2-2y-17)=3⋅4
-(16x-4x2-y2-2y-17)=3⋅4
Step 3.1.1.2
Apply the distributive property.
-(16x)-(-4x2)--y2-(-2y)--17=3⋅4
Step 3.1.1.3
Simplify.
Step 3.1.1.3.1
Multiply 16 by -1.
-16x-(-4x2)--y2-(-2y)--17=3⋅4
Step 3.1.1.3.2
Multiply -4 by -1.
-16x+4x2--y2-(-2y)--17=3⋅4
Step 3.1.1.3.3
Multiply --y2.
Step 3.1.1.3.3.1
Multiply -1 by -1.
-16x+4x2+1y2-(-2y)--17=3⋅4
Step 3.1.1.3.3.2
Multiply y2 by 1.
-16x+4x2+y2-(-2y)--17=3⋅4
-16x+4x2+y2-(-2y)--17=3⋅4
Step 3.1.1.3.4
Multiply -2 by -1.
-16x+4x2+y2+2y--17=3⋅4
Step 3.1.1.3.5
Multiply -1 by -17.
-16x+4x2+y2+2y+17=3⋅4
-16x+4x2+y2+2y+17=3⋅4
Step 3.1.1.4
Move -16x.
4x2+y2-16x+2y+17=3⋅4
4x2+y2-16x+2y+17=3⋅4
4x2+y2-16x+2y+17=3⋅4
Step 3.2
Simplify the right side.
Step 3.2.1
Multiply 3 by 4.
4x2+y2-16x+2y+17=12
4x2+y2-16x+2y+17=12
4x2+y2-16x+2y+17=12
Step 4
Step 4.1
Subtract 12 from both sides of the equation.
4x2+y2-16x+2y+17-12=0
Step 4.2
Subtract 12 from 17.
4x2+y2-16x+2y+5=0
4x2+y2-16x+2y+5=0