Examples
(x-√4)2-(y+3√2)2-4=0
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Rewrite 4 as 22.
(x-√22)2-(y+3√2)2-4=0
Step 1.1.2
Pull terms out from under the radical, assuming positive real numbers.
(x-1⋅2)2-(y+3√2)2-4=0
Step 1.1.3
Multiply -1 by 2.
(x-2)2-(y+3√2)2-4=0
(x-2)2-(y+3√2)2-4=0
Step 1.2
Rewrite (x-2)2 as (x-2)(x-2).
(x-2)(x-2)-(y+3√2)2-4=0
Step 1.3
Expand (x-2)(x-2) using the FOIL Method.
Step 1.3.1
Apply the distributive property.
x(x-2)-2(x-2)-(y+3√2)2-4=0
Step 1.3.2
Apply the distributive property.
x⋅x+x⋅-2-2(x-2)-(y+3√2)2-4=0
Step 1.3.3
Apply the distributive property.
x⋅x+x⋅-2-2x-2⋅-2-(y+3√2)2-4=0
x⋅x+x⋅-2-2x-2⋅-2-(y+3√2)2-4=0
Step 1.4
Simplify and combine like terms.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply x by x.
x2+x⋅-2-2x-2⋅-2-(y+3√2)2-4=0
Step 1.4.1.2
Move -2 to the left of x.
x2-2⋅x-2x-2⋅-2-(y+3√2)2-4=0
Step 1.4.1.3
Multiply -2 by -2.
x2-2x-2x+4-(y+3√2)2-4=0
x2-2x-2x+4-(y+3√2)2-4=0
Step 1.4.2
Subtract 2x from -2x.
x2-4x+4-(y+3√2)2-4=0
x2-4x+4-(y+3√2)2-4=0
Step 1.5
Rewrite (y+3√2)2 as (y+3√2)(y+3√2).
x2-4x+4-((y+3√2)(y+3√2))-4=0
Step 1.6
Expand (y+3√2)(y+3√2) using the FOIL Method.
Step 1.6.1
Apply the distributive property.
x2-4x+4-(y(y+3√2)+3√2(y+3√2))-4=0
Step 1.6.2
Apply the distributive property.
x2-4x+4-(y⋅y+y(3√2)+3√2(y+3√2))-4=0
Step 1.6.3
Apply the distributive property.
x2-4x+4-(y⋅y+y(3√2)+3√2y+3√2(3√2))-4=0
x2-4x+4-(y⋅y+y(3√2)+3√2y+3√2(3√2))-4=0
Step 1.7
Simplify and combine like terms.
Step 1.7.1
Simplify each term.
Step 1.7.1.1
Multiply y by y.
x2-4x+4-(y2+y(3√2)+3√2y+3√2(3√2))-4=0
Step 1.7.1.2
Move 3 to the left of y.
x2-4x+4-(y2+3⋅(y√2)+3√2y+3√2(3√2))-4=0
Step 1.7.1.3
Multiply 3√2(3√2).
Step 1.7.1.3.1
Multiply 3 by 3.
x2-4x+4-(y2+3y√2+3√2y+9√2√2)-4=0
Step 1.7.1.3.2
Raise √2 to the power of 1.
x2-4x+4-(y2+3y√2+3√2y+9(√2√2))-4=0
Step 1.7.1.3.3
Raise √2 to the power of 1.
x2-4x+4-(y2+3y√2+3√2y+9(√2√2))-4=0
Step 1.7.1.3.4
Use the power rule aman=am+n to combine exponents.
x2-4x+4-(y2+3y√2+3√2y+9√21+1)-4=0
Step 1.7.1.3.5
Add 1 and 1.
x2-4x+4-(y2+3y√2+3√2y+9√22)-4=0
x2-4x+4-(y2+3y√2+3√2y+9√22)-4=0
Step 1.7.1.4
Rewrite √22 as 2.
Step 1.7.1.4.1
Use n√ax=axn to rewrite √2 as 212.
x2-4x+4-(y2+3y√2+3√2y+9(212)2)-4=0
Step 1.7.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
x2-4x+4-(y2+3y√2+3√2y+9⋅212⋅2)-4=0
Step 1.7.1.4.3
Combine 12 and 2.
x2-4x+4-(y2+3y√2+3√2y+9⋅222)-4=0
Step 1.7.1.4.4
Cancel the common factor of 2.
Step 1.7.1.4.4.1
Cancel the common factor.
x2-4x+4-(y2+3y√2+3√2y+9⋅222)-4=0
Step 1.7.1.4.4.2
Rewrite the expression.
x2-4x+4-(y2+3y√2+3√2y+9⋅2)-4=0
x2-4x+4-(y2+3y√2+3√2y+9⋅2)-4=0
Step 1.7.1.4.5
Evaluate the exponent.
x2-4x+4-(y2+3y√2+3√2y+9⋅2)-4=0
x2-4x+4-(y2+3y√2+3√2y+9⋅2)-4=0
Step 1.7.1.5
Multiply 9 by 2.
x2-4x+4-(y2+3y√2+3√2y+18)-4=0
x2-4x+4-(y2+3y√2+3√2y+18)-4=0
Step 1.7.2
Reorder the factors of 3√2y.
x2-4x+4-(y2+3y√2+3y√2+18)-4=0
Step 1.7.3
Add 3y√2 and 3y√2.
x2-4x+4-(y2+6y√2+18)-4=0
x2-4x+4-(y2+6y√2+18)-4=0
Step 1.8
Apply the distributive property.
x2-4x+4-y2-(6y√2)-1⋅18-4=0
Step 1.9
Simplify.
Step 1.9.1
Multiply 6 by -1.
x2-4x+4-y2-6(y√2)-1⋅18-4=0
Step 1.9.2
Multiply -1 by 18.
x2-4x+4-y2-6(y√2)-18-4=0
x2-4x+4-y2-6y√2-18-4=0
x2-4x+4-y2-6y√2-18-4=0
Step 2
Step 2.1
Combine the opposite terms in x2-4x+4-y2-6y√2-18-4.
Step 2.1.1
Subtract 4 from 4.
x2-4x-y2-6y√2-18+0=0
Step 2.1.2
Add x2-4x-y2-6y√2-18 and 0.
x2-4x-y2-6y√2-18=0
x2-4x-y2-6y√2-18=0
Step 2.2
Move -4x.
x2-y2-4x-6y√2-18=0
x2-y2-4x-6y√2-18=0