Examples
(0,0) , (-6,6)
Step 1
Step 1.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2
Step 1.2
Substitute the actual values of the points into the distance formula.
r=√((-6)-0)2+(6-0)2
Step 1.3
Simplify.
Step 1.3.1
Subtract 0 from -6.
r=√(-6)2+(6-0)2
Step 1.3.2
Raise -6 to the power of 2.
r=√36+(6-0)2
Step 1.3.3
Subtract 0 from 6.
r=√36+62
Step 1.3.4
Raise 6 to the power of 2.
r=√36+36
Step 1.3.5
Add 36 and 36.
r=√72
Step 1.3.6
Rewrite 72 as 62⋅2.
Step 1.3.6.1
Factor 36 out of 72.
r=√36(2)
Step 1.3.6.2
Rewrite 36 as 62.
r=√62⋅2
r=√62⋅2
Step 1.3.7
Pull terms out from under the radical.
r=6√2
r=6√2
r=6√2
Step 2
(x-h)2+(y-k)2=r2 is the equation form for a circle with r radius and (h,k) as the center point. In this case, r=6√2 and the center point is (0,0). The equation for the circle is (x-(0))2+(y-(0))2=(6√2)2.
(x-(0))2+(y-(0))2=(6√2)2
Step 3
The circle equation is (x-0)2+(y-0)2=72.
(x-0)2+(y-0)2=72
Step 4
Simplify the circle equation.
x2+y2=72
Step 5