Examples
(z-3)4=2i(z−3)4=2i
Step 1
Substitute uu for z-3z−3.
u4=2iu4=2i
Step 2
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 3
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2|z|=√a2+b2 where z=a+biz=a+bi
Step 4
Substitute the actual values of a=0a=0 and b=2b=2.
|z|=√22|z|=√22
Step 5
Pull terms out from under the radical, assuming positive real numbers.
|z|=2|z|=2
Step 6
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(20)θ=arctan(20)
Step 7
Since the argument is undefined and bb is positive, the angle of the point on the complex plane is π2π2.
θ=π2θ=π2
Step 8
Substitute the values of θ=π2θ=π2 and |z|=2|z|=2.
2(cos(π2)+isin(π2))2(cos(π2)+isin(π2))
Step 9
Replace the right side of the equation with the trigonometric form.
u4=2(cos(π2)+isin(π2))u4=2(cos(π2)+isin(π2))
Step 10
Use De Moivre's Theorem to find an equation for uu.
r4(cos(4θ)+isin(4θ))=2i=2(cos(π2)+isin(π2))r4(cos(4θ)+isin(4θ))=2i=2(cos(π2)+isin(π2))
Step 11
Equate the modulus of the trigonometric form to r4r4 to find the value of rr.
r4=2r4=2
Step 12
Step 12.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
r=±4√2r=±4√2
Step 12.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 12.2.1
First, use the positive value of the ±± to find the first solution.
r=4√2r=4√2
Step 12.2.2
Next, use the negative value of the ±± to find the second solution.
r=-4√2r=−4√2
Step 12.2.3
The complete solution is the result of both the positive and negative portions of the solution.
r=4√2,-4√2r=4√2,−4√2
r=4√2,-4√2r=4√2,−4√2
r=4√2,-4√2r=4√2,−4√2
Step 13
Find the approximate value of rr.
r=1.18920711r=1.18920711
Step 14
Find the possible values of θθ.
cos(4θ)=cos(π2+2πn)cos(4θ)=cos(π2+2πn) and sin(4θ)=sin(π2+2πn)sin(4θ)=sin(π2+2πn)
Step 15
Finding all the possible values of θθ leads to the equation 4θ=π2+2πn4θ=π2+2πn.
4θ=π2+2πn4θ=π2+2πn
Step 16
Find the value of θθ for r=0r=0.
4θ=π2+2π(0)4θ=π2+2π(0)
Step 17
Step 17.1
Simplify.
Step 17.1.1
Multiply 2π(0)2π(0).
Step 17.1.1.1
Multiply 00 by 22.
4θ=π2+0π4θ=π2+0π
Step 17.1.1.2
Multiply 00 by ππ.
4θ=π2+04θ=π2+0
4θ=π2+04θ=π2+0
Step 17.1.2
Add π2π2 and 00.
4θ=π24θ=π2
4θ=π24θ=π2
Step 17.2
Divide each term in 4θ=π24θ=π2 by 44 and simplify.
Step 17.2.1
Divide each term in 4θ=π24θ=π2 by 44.
4θ4=π244θ4=π24
Step 17.2.2
Simplify the left side.
Step 17.2.2.1
Cancel the common factor of 44.
Step 17.2.2.1.1
Cancel the common factor.
4θ4=π24
Step 17.2.2.1.2
Divide θ by 1.
θ=π24
θ=π24
θ=π24
Step 17.2.3
Simplify the right side.
Step 17.2.3.1
Multiply the numerator by the reciprocal of the denominator.
θ=π2⋅14
Step 17.2.3.2
Multiply π2⋅14.
Step 17.2.3.2.1
Multiply π2 by 14.
θ=π2⋅4
Step 17.2.3.2.2
Multiply 2 by 4.
θ=π8
θ=π8
θ=π8
θ=π8
θ=π8
Step 18
Use the values of θ and r to find a solution to the equation u4=2i.
u0=1.18920711(cos(π8)+isin(π8))
Step 19
Step 19.1
Simplify each term.
Step 19.1.1
The exact value of cos(π8) is √2+√22.
Step 19.1.1.1
Rewrite π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u0=1.18920711(cos(π42)+isin(π8))
Step 19.1.1.2
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2.
u0=1.18920711(±√1+cos(π4)2+isin(π8))
Step 19.1.1.3
Change the ± to + because cosine is positive in the first quadrant.
u0=1.18920711(√1+cos(π4)2+isin(π8))
Step 19.1.1.4
The exact value of cos(π4) is √22.
u0=1.18920711(√1+√222+isin(π8))
Step 19.1.1.5
Simplify √1+√222.
Step 19.1.1.5.1
Write 1 as a fraction with a common denominator.
u0=1.18920711(√22+√222+isin(π8))
Step 19.1.1.5.2
Combine the numerators over the common denominator.
u0=1.18920711(√2+√222+isin(π8))
Step 19.1.1.5.3
Multiply the numerator by the reciprocal of the denominator.
u0=1.18920711(√2+√22⋅12+isin(π8))
Step 19.1.1.5.4
Multiply 2+√22⋅12.
Step 19.1.1.5.4.1
Multiply 2+√22 by 12.
u0=1.18920711(√2+√22⋅2+isin(π8))
Step 19.1.1.5.4.2
Multiply 2 by 2.
u0=1.18920711(√2+√24+isin(π8))
u0=1.18920711(√2+√24+isin(π8))
Step 19.1.1.5.5
Rewrite √2+√24 as √2+√2√4.
u0=1.18920711(√2+√2√4+isin(π8))
Step 19.1.1.5.6
Simplify the denominator.
Step 19.1.1.5.6.1
Rewrite 4 as 22.
u0=1.18920711(√2+√2√22+isin(π8))
Step 19.1.1.5.6.2
Pull terms out from under the radical, assuming positive real numbers.
u0=1.18920711(√2+√22+isin(π8))
u0=1.18920711(√2+√22+isin(π8))
u0=1.18920711(√2+√22+isin(π8))
u0=1.18920711(√2+√22+isin(π8))
Step 19.1.2
The exact value of sin(π8) is √2-√22.
Step 19.1.2.1
Rewrite π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u0=1.18920711(√2+√22+isin(π42))
Step 19.1.2.2
Apply the sine half-angle identity.
u0=1.18920711(√2+√22+i(±√1-cos(π4)2))
Step 19.1.2.3
Change the ± to + because sine is positive in the first quadrant.
u0=1.18920711(√2+√22+i√1-cos(π4)2)
Step 19.1.2.4
Simplify √1-cos(π4)2.
Step 19.1.2.4.1
The exact value of cos(π4) is √22.
u0=1.18920711(√2+√22+i√1-√222)
Step 19.1.2.4.2
Write 1 as a fraction with a common denominator.
u0=1.18920711(√2+√22+i√22-√222)
Step 19.1.2.4.3
Combine the numerators over the common denominator.
u0=1.18920711(√2+√22+i√2-√222)
Step 19.1.2.4.4
Multiply the numerator by the reciprocal of the denominator.
u0=1.18920711(√2+√22+i√2-√22⋅12)
Step 19.1.2.4.5
Multiply 2-√22⋅12.
Step 19.1.2.4.5.1
Multiply 2-√22 by 12.
u0=1.18920711(√2+√22+i√2-√22⋅2)
Step 19.1.2.4.5.2
Multiply 2 by 2.
u0=1.18920711(√2+√22+i√2-√24)
u0=1.18920711(√2+√22+i√2-√24)
Step 19.1.2.4.6
Rewrite √2-√24 as √2-√2√4.
u0=1.18920711(√2+√22+i(√2-√2√4))
Step 19.1.2.4.7
Simplify the denominator.
Step 19.1.2.4.7.1
Rewrite 4 as 22.
u0=1.18920711(√2+√22+i(√2-√2√22))
Step 19.1.2.4.7.2
Pull terms out from under the radical, assuming positive real numbers.
u0=1.18920711(√2+√22+i(√2-√22))
u0=1.18920711(√2+√22+i(√2-√22))
u0=1.18920711(√2+√22+i(√2-√22))
u0=1.18920711(√2+√22+i(√2-√22))
Step 19.1.3
Combine i and √2-√22.
u0=1.18920711(√2+√22+i√2-√22)
u0=1.18920711(√2+√22+i√2-√22)
Step 19.2
Simplify terms.
Step 19.2.1
Combine the numerators over the common denominator.
u0=1.18920711(√2+√2+i√2-√22)
Step 19.2.2
Combine 1.18920711 and √2+√2+i√2-√22.
u0=1.18920711(√2+√2+i√2-√2)2
Step 19.2.3
Factor 2 out of 2.
u0=1.18920711(√2+√2+i√2-√2)2(1)
u0=1.18920711(√2+√2+i√2-√2)2(1)
Step 19.3
Separate fractions.
u0=1.189207112⋅√2+√2+i√2-√21
Step 19.4
Simplify the expression.
Step 19.4.1
Divide 1.18920711 by 2.
u0=0.59460355(√2+√2+i√2-√21)
Step 19.4.2
Divide √2+√2+i√2-√2 by 1.
u0=0.59460355(√2+√2+i√2-√2)
u0=0.59460355(√2+√2+i√2-√2)
Step 19.5
Apply the distributive property.
u0=0.59460355√2+√2+0.59460355(i√2-√2)
Step 19.6
Multiply 0.59460355 by √2+√2.
u0=1.09868411+0.59460355(i√2-√2)
Step 19.7
Multiply √2-√2 by 0.59460355.
u0=1.09868411+0.45508986i
u0=1.09868411+0.45508986i
Step 20
Substitute z-3 for u to calculate the value of z after the right shift.
z0=3+1.09868411+0.45508986i
Step 21
Find the value of θ for r=1.
4θ=π2+2π(1)
Step 22
Step 22.1
Simplify.
Step 22.1.1
Multiply 2 by 1.
4θ=π2+2π
Step 22.1.2
To write 2π as a fraction with a common denominator, multiply by 22.
4θ=π2+2π⋅22
Step 22.1.3
Combine 2π and 22.
4θ=π2+2π⋅22
Step 22.1.4
Combine the numerators over the common denominator.
4θ=π+2π⋅22
Step 22.1.5
Multiply 2 by 2.
4θ=π+4π2
Step 22.1.6
Add π and 4π.
4θ=5π2
4θ=5π2
Step 22.2
Divide each term in 4θ=5π2 by 4 and simplify.
Step 22.2.1
Divide each term in 4θ=5π2 by 4.
4θ4=5π24
Step 22.2.2
Simplify the left side.
Step 22.2.2.1
Cancel the common factor of 4.
Step 22.2.2.1.1
Cancel the common factor.
4θ4=5π24
Step 22.2.2.1.2
Divide θ by 1.
θ=5π24
θ=5π24
θ=5π24
Step 22.2.3
Simplify the right side.
Step 22.2.3.1
Multiply the numerator by the reciprocal of the denominator.
θ=5π2⋅14
Step 22.2.3.2
Multiply 5π2⋅14.
Step 22.2.3.2.1
Multiply 5π2 by 14.
θ=5π2⋅4
Step 22.2.3.2.2
Multiply 2 by 4.
θ=5π8
θ=5π8
θ=5π8
θ=5π8
θ=5π8
Step 23
Use the values of θ and r to find a solution to the equation u4=2i.
u1=1.18920711(cos(5π8)+isin(5π8))
Step 24
Step 24.1
Simplify each term.
Step 24.1.1
The exact value of cos(5π8) is -√2-√22.
Step 24.1.1.1
Rewrite 5π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u1=1.18920711(cos(5π42)+isin(5π8))
Step 24.1.1.2
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2.
u1=1.18920711(±√1+cos(5π4)2+isin(5π8))
Step 24.1.1.3
Change the ± to - because cosine is negative in the second quadrant.
u1=1.18920711(-√1+cos(5π4)2+isin(5π8))
Step 24.1.1.4
Simplify -√1+cos(5π4)2.
Step 24.1.1.4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
u1=1.18920711(-√1-cos(π4)2+isin(5π8))
Step 24.1.1.4.2
The exact value of cos(π4) is √22.
u1=1.18920711(-√1-√222+isin(5π8))
Step 24.1.1.4.3
Write 1 as a fraction with a common denominator.
u1=1.18920711(-√22-√222+isin(5π8))
Step 24.1.1.4.4
Combine the numerators over the common denominator.
u1=1.18920711(-√2-√222+isin(5π8))
Step 24.1.1.4.5
Multiply the numerator by the reciprocal of the denominator.
u1=1.18920711(-√2-√22⋅12+isin(5π8))
Step 24.1.1.4.6
Multiply 2-√22⋅12.
Step 24.1.1.4.6.1
Multiply 2-√22 by 12.
u1=1.18920711(-√2-√22⋅2+isin(5π8))
Step 24.1.1.4.6.2
Multiply 2 by 2.
u1=1.18920711(-√2-√24+isin(5π8))
u1=1.18920711(-√2-√24+isin(5π8))
Step 24.1.1.4.7
Rewrite √2-√24 as √2-√2√4.
u1=1.18920711(-√2-√2√4+isin(5π8))
Step 24.1.1.4.8
Simplify the denominator.
Step 24.1.1.4.8.1
Rewrite 4 as 22.
u1=1.18920711(-√2-√2√22+isin(5π8))
Step 24.1.1.4.8.2
Pull terms out from under the radical, assuming positive real numbers.
u1=1.18920711(-√2-√22+isin(5π8))
u1=1.18920711(-√2-√22+isin(5π8))
u1=1.18920711(-√2-√22+isin(5π8))
u1=1.18920711(-√2-√22+isin(5π8))
Step 24.1.2
The exact value of sin(5π8) is √2+√22.
Step 24.1.2.1
Rewrite 5π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u1=1.18920711(-√2-√22+isin(5π42))
Step 24.1.2.2
Apply the sine half-angle identity.
u1=1.18920711(-√2-√22+i(±√1-cos(5π4)2))
Step 24.1.2.3
Change the ± to + because sine is positive in the second quadrant.
u1=1.18920711(-√2-√22+i√1-cos(5π4)2)
Step 24.1.2.4
Simplify √1-cos(5π4)2.
Step 24.1.2.4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
u1=1.18920711(-√2-√22+i√1+cos(π4)2)
Step 24.1.2.4.2
The exact value of cos(π4) is √22.
u1=1.18920711(-√2-√22+i√1+√222)
Step 24.1.2.4.3
Multiply --√22.
Step 24.1.2.4.3.1
Multiply -1 by -1.
u1=1.18920711(-√2-√22+i√1+1(√22)2)
Step 24.1.2.4.3.2
Multiply √22 by 1.
u1=1.18920711(-√2-√22+i√1+√222)
u1=1.18920711(-√2-√22+i√1+√222)
Step 24.1.2.4.4
Write 1 as a fraction with a common denominator.
u1=1.18920711(-√2-√22+i√22+√222)
Step 24.1.2.4.5
Combine the numerators over the common denominator.
u1=1.18920711(-√2-√22+i√2+√222)
Step 24.1.2.4.6
Multiply the numerator by the reciprocal of the denominator.
u1=1.18920711(-√2-√22+i√2+√22⋅12)
Step 24.1.2.4.7
Multiply 2+√22⋅12.
Step 24.1.2.4.7.1
Multiply 2+√22 by 12.
u1=1.18920711(-√2-√22+i√2+√22⋅2)
Step 24.1.2.4.7.2
Multiply 2 by 2.
u1=1.18920711(-√2-√22+i√2+√24)
u1=1.18920711(-√2-√22+i√2+√24)
Step 24.1.2.4.8
Rewrite √2+√24 as √2+√2√4.
u1=1.18920711(-√2-√22+i(√2+√2√4))
Step 24.1.2.4.9
Simplify the denominator.
Step 24.1.2.4.9.1
Rewrite 4 as 22.
u1=1.18920711(-√2-√22+i(√2+√2√22))
Step 24.1.2.4.9.2
Pull terms out from under the radical, assuming positive real numbers.
u1=1.18920711(-√2-√22+i(√2+√22))
u1=1.18920711(-√2-√22+i(√2+√22))
u1=1.18920711(-√2-√22+i(√2+√22))
u1=1.18920711(-√2-√22+i(√2+√22))
Step 24.1.3
Combine i and √2+√22.
u1=1.18920711(-√2-√22+i√2+√22)
u1=1.18920711(-√2-√22+i√2+√22)
Step 24.2
Simplify terms.
Step 24.2.1
Combine the numerators over the common denominator.
u1=1.18920711(-√2-√2+i√2+√22)
Step 24.2.2
Combine 1.18920711 and -√2-√2+i√2+√22.
u1=1.18920711(-√2-√2+i√2+√2)2
Step 24.2.3
Factor 2 out of 2.
u1=1.18920711(-√2-√2+i√2+√2)2(1)
u1=1.18920711(-√2-√2+i√2+√2)2(1)
Step 24.3
Separate fractions.
u1=1.189207112⋅-√2-√2+i√2+√21
Step 24.4
Simplify the expression.
Step 24.4.1
Divide 1.18920711 by 2.
u1=0.59460355(-√2-√2+i√2+√21)
Step 24.4.2
Divide -√2-√2+i√2+√2 by 1.
u1=0.59460355(-√2-√2+i√2+√2)
u1=0.59460355(-√2-√2+i√2+√2)
Step 24.5
Apply the distributive property.
u1=0.59460355(-√2-√2)+0.59460355(i√2+√2)
Step 24.6
Multiply 0.59460355(-√2-√2).
Step 24.6.1
Multiply -1 by 0.59460355.
u1=-0.59460355√2-√2+0.59460355(i√2+√2)
Step 24.6.2
Multiply -0.59460355 by √2-√2.
u1=-0.45508986+0.59460355(i√2+√2)
u1=-0.45508986+0.59460355(i√2+√2)
Step 24.7
Multiply √2+√2 by 0.59460355.
u1=-0.45508986+1.09868411i
u1=-0.45508986+1.09868411i
Step 25
Substitute z-3 for u to calculate the value of z after the right shift.
z1=3-0.45508986+1.09868411i
Step 26
Find the value of θ for r=2.
4θ=π2+2π(2)
Step 27
Step 27.1
Simplify.
Step 27.1.1
Multiply 2 by 2.
4θ=π2+4π
Step 27.1.2
To write 4π as a fraction with a common denominator, multiply by 22.
4θ=π2+4π⋅22
Step 27.1.3
Combine 4π and 22.
4θ=π2+4π⋅22
Step 27.1.4
Combine the numerators over the common denominator.
4θ=π+4π⋅22
Step 27.1.5
Multiply 2 by 4.
4θ=π+8π2
Step 27.1.6
Add π and 8π.
4θ=9π2
4θ=9π2
Step 27.2
Divide each term in 4θ=9π2 by 4 and simplify.
Step 27.2.1
Divide each term in 4θ=9π2 by 4.
4θ4=9π24
Step 27.2.2
Simplify the left side.
Step 27.2.2.1
Cancel the common factor of 4.
Step 27.2.2.1.1
Cancel the common factor.
4θ4=9π24
Step 27.2.2.1.2
Divide θ by 1.
θ=9π24
θ=9π24
θ=9π24
Step 27.2.3
Simplify the right side.
Step 27.2.3.1
Multiply the numerator by the reciprocal of the denominator.
θ=9π2⋅14
Step 27.2.3.2
Multiply 9π2⋅14.
Step 27.2.3.2.1
Multiply 9π2 by 14.
θ=9π2⋅4
Step 27.2.3.2.2
Multiply 2 by 4.
θ=9π8
θ=9π8
θ=9π8
θ=9π8
θ=9π8
Step 28
Use the values of θ and r to find a solution to the equation u4=2i.
u2=1.18920711(cos(9π8)+isin(9π8))
Step 29
Step 29.1
Simplify each term.
Step 29.1.1
The exact value of cos(9π8) is -√2+√22.
Step 29.1.1.1
Rewrite 9π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u2=1.18920711(cos(9π42)+isin(9π8))
Step 29.1.1.2
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2.
u2=1.18920711(±√1+cos(9π4)2+isin(9π8))
Step 29.1.1.3
Change the ± to - because cosine is negative in the third quadrant.
u2=1.18920711(-√1+cos(9π4)2+isin(9π8))
Step 29.1.1.4
Simplify -√1+cos(9π4)2.
Step 29.1.1.4.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
u2=1.18920711(-√1+cos(π4)2+isin(9π8))
Step 29.1.1.4.2
The exact value of cos(π4) is √22.
u2=1.18920711(-√1+√222+isin(9π8))
Step 29.1.1.4.3
Write 1 as a fraction with a common denominator.
u2=1.18920711(-√22+√222+isin(9π8))
Step 29.1.1.4.4
Combine the numerators over the common denominator.
u2=1.18920711(-√2+√222+isin(9π8))
Step 29.1.1.4.5
Multiply the numerator by the reciprocal of the denominator.
u2=1.18920711(-√2+√22⋅12+isin(9π8))
Step 29.1.1.4.6
Multiply 2+√22⋅12.
Step 29.1.1.4.6.1
Multiply 2+√22 by 12.
u2=1.18920711(-√2+√22⋅2+isin(9π8))
Step 29.1.1.4.6.2
Multiply 2 by 2.
u2=1.18920711(-√2+√24+isin(9π8))
u2=1.18920711(-√2+√24+isin(9π8))
Step 29.1.1.4.7
Rewrite √2+√24 as √2+√2√4.
u2=1.18920711(-√2+√2√4+isin(9π8))
Step 29.1.1.4.8
Simplify the denominator.
Step 29.1.1.4.8.1
Rewrite 4 as 22.
u2=1.18920711(-√2+√2√22+isin(9π8))
Step 29.1.1.4.8.2
Pull terms out from under the radical, assuming positive real numbers.
u2=1.18920711(-√2+√22+isin(9π8))
u2=1.18920711(-√2+√22+isin(9π8))
u2=1.18920711(-√2+√22+isin(9π8))
u2=1.18920711(-√2+√22+isin(9π8))
Step 29.1.2
The exact value of sin(9π8) is -√2-√22.
Step 29.1.2.1
Rewrite 9π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u2=1.18920711(-√2+√22+isin(9π42))
Step 29.1.2.2
Apply the sine half-angle identity.
u2=1.18920711(-√2+√22+i(±√1-cos(9π4)2))
Step 29.1.2.3
Change the ± to - because sine is negative in the third quadrant.
u2=1.18920711(-√2+√22+i(-√1-cos(9π4)2))
Step 29.1.2.4
Simplify -√1-cos(9π4)2.
Step 29.1.2.4.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
u2=1.18920711(-√2+√22+i(-√1-cos(π4)2))
Step 29.1.2.4.2
The exact value of cos(π4) is √22.
u2=1.18920711(-√2+√22+i(-√1-√222))
Step 29.1.2.4.3
Write 1 as a fraction with a common denominator.
u2=1.18920711(-√2+√22+i(-√22-√222))
Step 29.1.2.4.4
Combine the numerators over the common denominator.
u2=1.18920711(-√2+√22+i(-√2-√222))
Step 29.1.2.4.5
Multiply the numerator by the reciprocal of the denominator.
u2=1.18920711(-√2+√22+i(-√2-√22⋅12))
Step 29.1.2.4.6
Multiply 2-√22⋅12.
Step 29.1.2.4.6.1
Multiply 2-√22 by 12.
u2=1.18920711(-√2+√22+i(-√2-√22⋅2))
Step 29.1.2.4.6.2
Multiply 2 by 2.
u2=1.18920711(-√2+√22+i(-√2-√24))
u2=1.18920711(-√2+√22+i(-√2-√24))
Step 29.1.2.4.7
Rewrite √2-√24 as √2-√2√4.
u2=1.18920711(-√2+√22+i(-√2-√2√4))
Step 29.1.2.4.8
Simplify the denominator.
Step 29.1.2.4.8.1
Rewrite 4 as 22.
u2=1.18920711(-√2+√22+i(-√2-√2√22))
Step 29.1.2.4.8.2
Pull terms out from under the radical, assuming positive real numbers.
u2=1.18920711(-√2+√22+i(-√2-√22))
u2=1.18920711(-√2+√22+i(-√2-√22))
u2=1.18920711(-√2+√22+i(-√2-√22))
u2=1.18920711(-√2+√22+i(-√2-√22))
Step 29.1.3
Combine i and √2-√22.
u2=1.18920711(-√2+√22-i√2-√22)
u2=1.18920711(-√2+√22-i√2-√22)
Step 29.2
Simplify terms.
Step 29.2.1
Combine the numerators over the common denominator.
u2=1.18920711(-√2+√2-i√2-√22)
Step 29.2.2
Combine 1.18920711 and -√2+√2-i√2-√22.
u2=1.18920711(-√2+√2-i√2-√2)2
Step 29.2.3
Factor 2 out of 2.
u2=1.18920711(-√2+√2-i√2-√2)2(1)
u2=1.18920711(-√2+√2-i√2-√2)2(1)
Step 29.3
Separate fractions.
u2=1.189207112⋅-√2+√2-i√2-√21
Step 29.4
Simplify the expression.
Step 29.4.1
Divide 1.18920711 by 2.
u2=0.59460355(-√2+√2-i√2-√21)
Step 29.4.2
Divide -√2+√2-i√2-√2 by 1.
u2=0.59460355(-√2+√2-i√2-√2)
u2=0.59460355(-√2+√2-i√2-√2)
Step 29.5
Apply the distributive property.
u2=0.59460355(-√2+√2)+0.59460355(-i√2-√2)
Step 29.6
Multiply 0.59460355(-√2+√2).
Step 29.6.1
Multiply -1 by 0.59460355.
u2=-0.59460355√2+√2+0.59460355(-i√2-√2)
Step 29.6.2
Multiply -0.59460355 by √2+√2.
u2=-1.09868411+0.59460355(-i√2-√2)
u2=-1.09868411+0.59460355(-i√2-√2)
Step 29.7
Multiply 0.59460355(-i√2-√2).
Step 29.7.1
Multiply -1 by 0.59460355.
u2=-1.09868411-0.59460355(i√2-√2)
Step 29.7.2
Multiply √2-√2 by -0.59460355.
u2=-1.09868411-0.45508986i
u2=-1.09868411-0.45508986i
u2=-1.09868411-0.45508986i
Step 30
Substitute z-3 for u to calculate the value of z after the right shift.
z2=3-1.09868411-0.45508986i
Step 31
Find the value of θ for r=3.
4θ=π2+2π(3)
Step 32
Step 32.1
Simplify.
Step 32.1.1
Multiply 3 by 2.
4θ=π2+6π
Step 32.1.2
To write 6π as a fraction with a common denominator, multiply by 22.
4θ=π2+6π⋅22
Step 32.1.3
Combine 6π and 22.
4θ=π2+6π⋅22
Step 32.1.4
Combine the numerators over the common denominator.
4θ=π+6π⋅22
Step 32.1.5
Multiply 2 by 6.
4θ=π+12π2
Step 32.1.6
Add π and 12π.
4θ=13π2
4θ=13π2
Step 32.2
Divide each term in 4θ=13π2 by 4 and simplify.
Step 32.2.1
Divide each term in 4θ=13π2 by 4.
4θ4=13π24
Step 32.2.2
Simplify the left side.
Step 32.2.2.1
Cancel the common factor of 4.
Step 32.2.2.1.1
Cancel the common factor.
4θ4=13π24
Step 32.2.2.1.2
Divide θ by 1.
θ=13π24
θ=13π24
θ=13π24
Step 32.2.3
Simplify the right side.
Step 32.2.3.1
Multiply the numerator by the reciprocal of the denominator.
θ=13π2⋅14
Step 32.2.3.2
Multiply 13π2⋅14.
Step 32.2.3.2.1
Multiply 13π2 by 14.
θ=13π2⋅4
Step 32.2.3.2.2
Multiply 2 by 4.
θ=13π8
θ=13π8
θ=13π8
θ=13π8
θ=13π8
Step 33
Use the values of θ and r to find a solution to the equation u4=2i.
u3=1.18920711(cos(13π8)+isin(13π8))
Step 34
Step 34.1
Simplify each term.
Step 34.1.1
The exact value of cos(13π8) is √2-√22.
Step 34.1.1.1
Rewrite 13π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u3=1.18920711(cos(13π42)+isin(13π8))
Step 34.1.1.2
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2.
u3=1.18920711(±√1+cos(13π4)2+isin(13π8))
Step 34.1.1.3
Change the ± to + because cosine is positive in the fourth quadrant.
u3=1.18920711(√1+cos(13π4)2+isin(13π8))
Step 34.1.1.4
Simplify √1+cos(13π4)2.
Step 34.1.1.4.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
u3=1.18920711(√1+cos(5π4)2+isin(13π8))
Step 34.1.1.4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
u3=1.18920711(√1-cos(π4)2+isin(13π8))
Step 34.1.1.4.3
The exact value of cos(π4) is √22.
u3=1.18920711(√1-√222+isin(13π8))
Step 34.1.1.4.4
Write 1 as a fraction with a common denominator.
u3=1.18920711(√22-√222+isin(13π8))
Step 34.1.1.4.5
Combine the numerators over the common denominator.
u3=1.18920711(√2-√222+isin(13π8))
Step 34.1.1.4.6
Multiply the numerator by the reciprocal of the denominator.
u3=1.18920711(√2-√22⋅12+isin(13π8))
Step 34.1.1.4.7
Multiply 2-√22⋅12.
Step 34.1.1.4.7.1
Multiply 2-√22 by 12.
u3=1.18920711(√2-√22⋅2+isin(13π8))
Step 34.1.1.4.7.2
Multiply 2 by 2.
u3=1.18920711(√2-√24+isin(13π8))
u3=1.18920711(√2-√24+isin(13π8))
Step 34.1.1.4.8
Rewrite √2-√24 as √2-√2√4.
u3=1.18920711(√2-√2√4+isin(13π8))
Step 34.1.1.4.9
Simplify the denominator.
Step 34.1.1.4.9.1
Rewrite 4 as 22.
u3=1.18920711(√2-√2√22+isin(13π8))
Step 34.1.1.4.9.2
Pull terms out from under the radical, assuming positive real numbers.
u3=1.18920711(√2-√22+isin(13π8))
u3=1.18920711(√2-√22+isin(13π8))
u3=1.18920711(√2-√22+isin(13π8))
u3=1.18920711(√2-√22+isin(13π8))
Step 34.1.2
The exact value of sin(13π8) is -√2+√22.
Step 34.1.2.1
Rewrite 13π8 as an angle where the values of the six trigonometric functions are known divided by 2.
u3=1.18920711(√2-√22+isin(13π42))
Step 34.1.2.2
Apply the sine half-angle identity.
u3=1.18920711(√2-√22+i(±√1-cos(13π4)2))
Step 34.1.2.3
Change the ± to - because sine is negative in the fourth quadrant.
u3=1.18920711(√2-√22+i(-√1-cos(13π4)2))
Step 34.1.2.4
Simplify -√1-cos(13π4)2.
Step 34.1.2.4.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
u3=1.18920711(√2-√22+i(-√1-cos(5π4)2))
Step 34.1.2.4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
u3=1.18920711(√2-√22+i(-√1+cos(π4)2))
Step 34.1.2.4.3
The exact value of cos(π4) is √22.
u3=1.18920711(√2-√22+i(-√1+√222))
Step 34.1.2.4.4
Multiply --√22.
Step 34.1.2.4.4.1
Multiply -1 by -1.
u3=1.18920711(√2-√22+i(-√1+1(√22)2))
Step 34.1.2.4.4.2
Multiply √22 by 1.
u3=1.18920711(√2-√22+i(-√1+√222))
u3=1.18920711(√2-√22+i(-√1+√222))
Step 34.1.2.4.5
Write 1 as a fraction with a common denominator.
u3=1.18920711(√2-√22+i(-√22+√222))
Step 34.1.2.4.6
Combine the numerators over the common denominator.
u3=1.18920711(√2-√22+i(-√2+√222))
Step 34.1.2.4.7
Multiply the numerator by the reciprocal of the denominator.
u3=1.18920711(√2-√22+i(-√2+√22⋅12))
Step 34.1.2.4.8
Multiply 2+√22⋅12.
Step 34.1.2.4.8.1
Multiply 2+√22 by 12.
u3=1.18920711(√2-√22+i(-√2+√22⋅2))
Step 34.1.2.4.8.2
Multiply 2 by 2.
u3=1.18920711(√2-√22+i(-√2+√24))
u3=1.18920711(√2-√22+i(-√2+√24))
Step 34.1.2.4.9
Rewrite √2+√24 as √2+√2√4.
u3=1.18920711(√2-√22+i(-√2+√2√4))
Step 34.1.2.4.10
Simplify the denominator.
Step 34.1.2.4.10.1
Rewrite 4 as 22.
u3=1.18920711(√2-√22+i(-√2+√2√22))
Step 34.1.2.4.10.2
Pull terms out from under the radical, assuming positive real numbers.
u3=1.18920711(√2-√22+i(-√2+√22))
u3=1.18920711(√2-√22+i(-√2+√22))
u3=1.18920711(√2-√22+i(-√2+√22))
u3=1.18920711(√2-√22+i(-√2+√22))
Step 34.1.3
Combine i and √2+√22.
u3=1.18920711(√2-√22-i√2+√22)
u3=1.18920711(√2-√22-i√2+√22)
Step 34.2
Simplify terms.
Step 34.2.1
Combine the numerators over the common denominator.
u3=1.18920711(√2-√2-i√2+√22)
Step 34.2.2
Combine 1.18920711 and √2-√2-i√2+√22.
u3=1.18920711(√2-√2-i√2+√2)2
Step 34.2.3
Factor 2 out of 2.
u3=1.18920711(√2-√2-i√2+√2)2(1)
u3=1.18920711(√2-√2-i√2+√2)2(1)
Step 34.3
Separate fractions.
u3=1.189207112⋅√2-√2-i√2+√21
Step 34.4
Simplify the expression.
Step 34.4.1
Divide 1.18920711 by 2.
u3=0.59460355(√2-√2-i√2+√21)
Step 34.4.2
Divide √2-√2-i√2+√2 by 1.
u3=0.59460355(√2-√2-i√2+√2)
u3=0.59460355(√2-√2-i√2+√2)
Step 34.5
Apply the distributive property.
u3=0.59460355√2-√2+0.59460355(-i√2+√2)
Step 34.6
Multiply 0.59460355 by √2-√2.
u3=0.45508986+0.59460355(-i√2+√2)
Step 34.7
Multiply 0.59460355(-i√2+√2).
Step 34.7.1
Multiply -1 by 0.59460355.
u3=0.45508986-0.59460355(i√2+√2)
Step 34.7.2
Multiply √2+√2 by -0.59460355.
u3=0.45508986-1.09868411i
u3=0.45508986-1.09868411i
u3=0.45508986-1.09868411i
Step 35
Substitute z-3 for u to calculate the value of z after the right shift.
z3=3+0.45508986-1.09868411i
Step 36
These are the complex solutions to u4=2i.
z0=4.09868411+0.45508986i
z1=2.54491013+1.09868411i
z2=1.90131588-0.45508986i
z3=3.45508986-1.09868411i