Examples
(0,0)(0,0) , (4,0)(4,0) , (6,0)(6,0)
Step 1
There are two general equations for an ellipse.
Horizontal ellipse equation (x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1
Vertical ellipse equation (y-k)2a2+(x-h)2b2=1(y−k)2a2+(x−h)2b2=1
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
a=√(6-0)2+(0-0)2a=√(6−0)2+(0−0)2
Step 2.3
Simplify.
Step 2.3.1
Subtract 00 from 66.
a=√62+(0-0)2a=√62+(0−0)2
Step 2.3.2
Raise 66 to the power of 22.
a=√36+(0-0)2a=√36+(0−0)2
Step 2.3.3
Subtract 00 from 00.
a=√36+02a=√36+02
Step 2.3.4
Raising 00 to any positive power yields 00.
a=√36+0a=√36+0
Step 2.3.5
Add 3636 and 00.
a=√36a=√36
Step 2.3.6
Rewrite 3636 as 6262.
a=√62a=√62
Step 2.3.7
Pull terms out from under the radical, assuming positive real numbers.
a=6a=6
a=6a=6
a=6a=6
Step 3
Step 3.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 3.2
Substitute the actual values of the points into the distance formula.
c=√(4-0)2+(0-0)2c=√(4−0)2+(0−0)2
Step 3.3
Simplify.
Step 3.3.1
Subtract 00 from 44.
c=√42+(0-0)2c=√42+(0−0)2
Step 3.3.2
Raise 44 to the power of 22.
c=√16+(0-0)2c=√16+(0−0)2
Step 3.3.3
Subtract 00 from 00.
c=√16+02c=√16+02
Step 3.3.4
Raising 00 to any positive power yields 00.
c=√16+0c=√16+0
Step 3.3.5
Add 1616 and 00.
c=√16c=√16
Step 3.3.6
Rewrite 1616 as 4242.
c=√42c=√42
Step 3.3.7
Pull terms out from under the radical, assuming positive real numbers.
c=4c=4
c=4c=4
c=4c=4
Step 4
Step 4.1
Rewrite the equation as (6)2-b2=42(6)2−b2=42.
(6)2-b2=42(6)2−b2=42
Step 4.2
Raise 66 to the power of 22.
36-b2=4236−b2=42
Step 4.3
Raise 44 to the power of 22.
36-b2=1636−b2=16
Step 4.4
Move all terms not containing bb to the right side of the equation.
Step 4.4.1
Subtract 3636 from both sides of the equation.
-b2=16-36−b2=16−36
Step 4.4.2
Subtract 3636 from 1616.
-b2=-20−b2=−20
-b2=-20−b2=−20
Step 4.5
Divide each term in -b2=-20−b2=−20 by -1−1 and simplify.
Step 4.5.1
Divide each term in -b2=-20−b2=−20 by -1−1.
-b2-1=-20-1−b2−1=−20−1
Step 4.5.2
Simplify the left side.
Step 4.5.2.1
Dividing two negative values results in a positive value.
b21=-20-1b21=−20−1
Step 4.5.2.2
Divide b2b2 by 11.
b2=-20-1b2=−20−1
b2=-20-1b2=−20−1
Step 4.5.3
Simplify the right side.
Step 4.5.3.1
Divide -20−20 by -1−1.
b2=20b2=20
b2=20b2=20
b2=20b2=20
Step 4.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±√20b=±√20
Step 4.7
Simplify ±√20±√20.
Step 4.7.1
Rewrite 2020 as 22⋅522⋅5.
Step 4.7.1.1
Factor 44 out of 2020.
b=±√4(5)b=±√4(5)
Step 4.7.1.2
Rewrite 44 as 2222.
b=±√22⋅5b=±√22⋅5
b=±√22⋅5b=±√22⋅5
Step 4.7.2
Pull terms out from under the radical.
b=±2√5b=±2√5
b=±2√5b=±2√5
Step 4.8
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.8.1
First, use the positive value of the ±± to find the first solution.
b=2√5b=2√5
Step 4.8.2
Next, use the negative value of the ±± to find the second solution.
b=-2√5b=−2√5
Step 4.8.3
The complete solution is the result of both the positive and negative portions of the solution.
b=2√5,-2√5b=2√5,−2√5
b=2√5,-2√5b=2√5,−2√5
b=2√5,-2√5b=2√5,−2√5
Step 5
bb is a distance, which means it should be a positive number.
b=2√5b=2√5
Step 6
Step 6.1
Slope is equal to the change in yy over the change in xx, or rise over run.
m=change in ychange in xm=change in ychange in x
Step 6.2
The change in xx is equal to the difference in x-coordinates (also called run), and the change in yy is equal to the difference in y-coordinates (also called rise).
m=y2-y1x2-x1m=y2−y1x2−x1
Step 6.3
Substitute in the values of xx and yy into the equation to find the slope.
m=0-(0)0-(4)m=0−(0)0−(4)
Step 6.4
Simplify.
Step 6.4.1
Simplify the numerator.
Step 6.4.1.1
Multiply -1−1 by 00.
m=0+00-(4)m=0+00−(4)
Step 6.4.1.2
Add 00 and 00.
m=00-(4)m=00−(4)
m=00-(4)m=00−(4)
Step 6.4.2
Simplify the denominator.
Step 6.4.2.1
Multiply -1−1 by 44.
m=00-4m=00−4
Step 6.4.2.2
Subtract 44 from 00.
m=0-4m=0−4
m=0-4m=0−4
Step 6.4.3
Divide 00 by -4−4.
m=0m=0
m=0m=0
Step 6.5
The general equation for a horizontal ellipse is (x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1.
(x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1
(x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1
Step 7
Substitute the values h=0h=0, k=0k=0, a=6a=6, and b=2√5b=2√5 into (x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1 to get the ellipse equation (x-(0))2(6)2+(y-(0))2(2√5)2=1(x−(0))2(6)2+(y−(0))2(2√5)2=1.
(x-(0))2(6)2+(y-(0))2(2√5)2=1(x−(0))2(6)2+(y−(0))2(2√5)2=1
Step 8
Step 8.1
Simplify the numerator.
Step 8.1.1
Multiply -1−1 by 00.
(x+0)262+(y-(0))2(2√5)2=1(x+0)262+(y−(0))2(2√5)2=1
Step 8.1.2
Add xx and 00.
x262+(y-(0))2(2√5)2=1x262+(y−(0))2(2√5)2=1
x262+(y-(0))2(2√5)2=1x262+(y−(0))2(2√5)2=1
Step 8.2
Raise 66 to the power of 22.
x236+(y-(0))2(2√5)2=1x236+(y−(0))2(2√5)2=1
Step 8.3
Simplify the numerator.
Step 8.3.1
Multiply -1−1 by 00.
x236+(y+0)2(2√5)2=1x236+(y+0)2(2√5)2=1
Step 8.3.2
Add yy and 00.
x236+y2(2√5)2=1x236+y2(2√5)2=1
x236+y2(2√5)2=1x236+y2(2√5)2=1
Step 8.4
Simplify the denominator.
Step 8.4.1
Apply the product rule to 2√52√5.
x236+y222√52=1x236+y222√52=1
Step 8.4.2
Raise 22 to the power of 22.
x236+y24√52=1x236+y24√52=1
Step 8.4.3
Rewrite √52√52 as 55.
Step 8.4.3.1
Use n√ax=axnn√ax=axn to rewrite √5√5 as 512512.
x236+y24(512)2=1x236+y24(512)2=1
Step 8.4.3.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x236+y24⋅512⋅2=1x236+y24⋅512⋅2=1
Step 8.4.3.3
Combine 1212 and 22.
x236+y24⋅522=1x236+y24⋅522=1
Step 8.4.3.4
Cancel the common factor of 22.
Step 8.4.3.4.1
Cancel the common factor.
x236+y24⋅522=1
Step 8.4.3.4.2
Rewrite the expression.
x236+y24⋅5=1
x236+y24⋅5=1
Step 8.4.3.5
Evaluate the exponent.
x236+y24⋅5=1
x236+y24⋅5=1
x236+y24⋅5=1
Step 8.5
Multiply 4 by 5.
x236+y220=1
x236+y220=1
Step 9