Examples
12x2+x(x-3)=4x-112x2+x(x−3)=4x−1
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
12x2+x⋅x+x⋅-3=4x-112x2+x⋅x+x⋅−3=4x−1
Step 1.1.2
Multiply xx by xx.
12x2+x2+x⋅-3=4x-112x2+x2+x⋅−3=4x−1
Step 1.1.3
Move -3−3 to the left of xx.
12x2+x2-3x=4x-112x2+x2−3x=4x−1
12x2+x2-3x=4x-112x2+x2−3x=4x−1
Step 1.2
Add 12x212x2 and x2x2.
13x2-3x=4x-113x2−3x=4x−1
13x2-3x=4x-113x2−3x=4x−1
Step 2
Step 2.1
Subtract 4x4x from both sides of the equation.
13x2-3x-4x=-113x2−3x−4x=−1
Step 2.2
Subtract 4x4x from -3x−3x.
13x2-7x=-113x2−7x=−1
13x2-7x=-113x2−7x=−1
Step 3
Add 11 to both sides of the equation.
13x2-7x+1=013x2−7x+1=0
Step 4
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 5
Substitute the values a=13, b=-7, and c=1 into the quadratic formula and solve for x.
7±√(-7)2-4⋅(13⋅1)2⋅13
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise -7 to the power of 2.
x=7±√49-4⋅13⋅12⋅13
Step 6.1.2
Multiply -4⋅13⋅1.
Step 6.1.2.1
Multiply -4 by 13.
x=7±√49-52⋅12⋅13
Step 6.1.2.2
Multiply -52 by 1.
x=7±√49-522⋅13
x=7±√49-522⋅13
Step 6.1.3
Subtract 52 from 49.
x=7±√-32⋅13
Step 6.1.4
Rewrite -3 as -1(3).
x=7±√-1⋅32⋅13
Step 6.1.5
Rewrite √-1(3) as √-1⋅√3.
x=7±√-1⋅√32⋅13
Step 6.1.6
Rewrite √-1 as i.
x=7±i√32⋅13
x=7±i√32⋅13
Step 6.2
Multiply 2 by 13.
x=7±i√326
x=7±i√326
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Raise -7 to the power of 2.
x=7±√49-4⋅13⋅12⋅13
Step 7.1.2
Multiply -4⋅13⋅1.
Step 7.1.2.1
Multiply -4 by 13.
x=7±√49-52⋅12⋅13
Step 7.1.2.2
Multiply -52 by 1.
x=7±√49-522⋅13
x=7±√49-522⋅13
Step 7.1.3
Subtract 52 from 49.
x=7±√-32⋅13
Step 7.1.4
Rewrite -3 as -1(3).
x=7±√-1⋅32⋅13
Step 7.1.5
Rewrite √-1(3) as √-1⋅√3.
x=7±√-1⋅√32⋅13
Step 7.1.6
Rewrite √-1 as i.
x=7±i√32⋅13
x=7±i√32⋅13
Step 7.2
Multiply 2 by 13.
x=7±i√326
Step 7.3
Change the ± to +.
x=7+i√326
x=7+i√326
Step 8
Step 8.1
Simplify the numerator.
Step 8.1.1
Raise -7 to the power of 2.
x=7±√49-4⋅13⋅12⋅13
Step 8.1.2
Multiply -4⋅13⋅1.
Step 8.1.2.1
Multiply -4 by 13.
x=7±√49-52⋅12⋅13
Step 8.1.2.2
Multiply -52 by 1.
x=7±√49-522⋅13
x=7±√49-522⋅13
Step 8.1.3
Subtract 52 from 49.
x=7±√-32⋅13
Step 8.1.4
Rewrite -3 as -1(3).
x=7±√-1⋅32⋅13
Step 8.1.5
Rewrite √-1(3) as √-1⋅√3.
x=7±√-1⋅√32⋅13
Step 8.1.6
Rewrite √-1 as i.
x=7±i√32⋅13
x=7±i√32⋅13
Step 8.2
Multiply 2 by 13.
x=7±i√326
Step 8.3
Change the ± to -.
x=7-i√326
x=7-i√326
Step 9
The final answer is the combination of both solutions.
x=7+i√326,7-i√326