Examples

Solve Using the Square Root Property
12x2+x(x-3)=4x-112x2+x(x3)=4x1
Step 1
Simplify 12x2+x(x-3)12x2+x(x3).
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Apply the distributive property.
12x2+xx+x-3=4x-112x2+xx+x3=4x1
Step 1.1.2
Multiply xx by xx.
12x2+x2+x-3=4x-112x2+x2+x3=4x1
Step 1.1.3
Move -33 to the left of xx.
12x2+x2-3x=4x-112x2+x23x=4x1
12x2+x2-3x=4x-112x2+x23x=4x1
Step 1.2
Add 12x212x2 and x2x2.
13x2-3x=4x-113x23x=4x1
13x2-3x=4x-113x23x=4x1
Step 2
Move all terms containing xx to the left side of the equation.
Tap for more steps...
Step 2.1
Subtract 4x4x from both sides of the equation.
13x2-3x-4x=-113x23x4x=1
Step 2.2
Subtract 4x4x from -3x3x.
13x2-7x=-113x27x=1
13x2-7x=-113x27x=1
Step 3
Add 11 to both sides of the equation.
13x2-7x+1=013x27x+1=0
Step 4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 5
Substitute the values a=13, b=-7, and c=1 into the quadratic formula and solve for x.
7±(-7)2-4(131)213
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Raise -7 to the power of 2.
x=7±49-4131213
Step 6.1.2
Multiply -4131.
Tap for more steps...
Step 6.1.2.1
Multiply -4 by 13.
x=7±49-521213
Step 6.1.2.2
Multiply -52 by 1.
x=7±49-52213
x=7±49-52213
Step 6.1.3
Subtract 52 from 49.
x=7±-3213
Step 6.1.4
Rewrite -3 as -1(3).
x=7±-13213
Step 6.1.5
Rewrite -1(3) as -13.
x=7±-13213
Step 6.1.6
Rewrite -1 as i.
x=7±i3213
x=7±i3213
Step 6.2
Multiply 2 by 13.
x=7±i326
x=7±i326
Step 7
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Raise -7 to the power of 2.
x=7±49-4131213
Step 7.1.2
Multiply -4131.
Tap for more steps...
Step 7.1.2.1
Multiply -4 by 13.
x=7±49-521213
Step 7.1.2.2
Multiply -52 by 1.
x=7±49-52213
x=7±49-52213
Step 7.1.3
Subtract 52 from 49.
x=7±-3213
Step 7.1.4
Rewrite -3 as -1(3).
x=7±-13213
Step 7.1.5
Rewrite -1(3) as -13.
x=7±-13213
Step 7.1.6
Rewrite -1 as i.
x=7±i3213
x=7±i3213
Step 7.2
Multiply 2 by 13.
x=7±i326
Step 7.3
Change the ± to +.
x=7+i326
x=7+i326
Step 8
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Raise -7 to the power of 2.
x=7±49-4131213
Step 8.1.2
Multiply -4131.
Tap for more steps...
Step 8.1.2.1
Multiply -4 by 13.
x=7±49-521213
Step 8.1.2.2
Multiply -52 by 1.
x=7±49-52213
x=7±49-52213
Step 8.1.3
Subtract 52 from 49.
x=7±-3213
Step 8.1.4
Rewrite -3 as -1(3).
x=7±-13213
Step 8.1.5
Rewrite -1(3) as -13.
x=7±-13213
Step 8.1.6
Rewrite -1 as i.
x=7±i3213
x=7±i3213
Step 8.2
Multiply 2 by 13.
x=7±i326
Step 8.3
Change the ± to -.
x=7-i326
x=7-i326
Step 9
The final answer is the combination of both solutions.
x=7+i326,7-i326
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay