Examples
y=|9x-3|y=|9x−3|
Step 1
To find the xx coordinate of the vertex, set the inside of the absolute value 9x-39x−3 equal to 00. In this case, 9x-3=09x−3=0.
9x-3=09x−3=0
Step 2
Step 2.1
Add 33 to both sides of the equation.
9x=39x=3
Step 2.2
Divide each term in 9x=39x=3 by 99 and simplify.
Step 2.2.1
Divide each term in 9x=39x=3 by 99.
9x9=399x9=39
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of 99.
Step 2.2.2.1.1
Cancel the common factor.
9x9=39
Step 2.2.2.1.2
Divide x by 1.
x=39
x=39
x=39
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Cancel the common factor of 3 and 9.
Step 2.2.3.1.1
Factor 3 out of 3.
x=3(1)9
Step 2.2.3.1.2
Cancel the common factors.
Step 2.2.3.1.2.1
Factor 3 out of 9.
x=3⋅13⋅3
Step 2.2.3.1.2.2
Cancel the common factor.
x=3⋅13⋅3
Step 2.2.3.1.2.3
Rewrite the expression.
x=13
x=13
x=13
x=13
x=13
x=13
Step 3
Replace the variable x with 13 in the expression.
y=|9(13)-3|
Step 4
Step 4.1
Cancel the common factor of 3.
Step 4.1.1
Factor 3 out of 9.
y=|3(3)(13)-3|
Step 4.1.2
Cancel the common factor.
y=|3⋅(3(13))-3|
Step 4.1.3
Rewrite the expression.
y=|3-3|
y=|3-3|
Step 4.2
Subtract 3 from 3.
y=|0|
Step 4.3
The absolute value is the distance between a number and zero. The distance between 0 and 0 is 0.
y=0
y=0
Step 5
The absolute value vertex is (13,0).
(13,0)
Step 6