Examples
y=2x2-12x+9y=2x2−12x+9
Step 1
Plug in 00 for yy.
0=2x2-12x+90=2x2−12x+9
Step 2
Step 2.1
Remove parentheses.
0=2x2-12x+90=2x2−12x+9
Step 2.2
Since xx is on the right side of the equation, switch the sides so it is on the left side of the equation.
2x2-12x+9=02x2−12x+9=0
Step 2.3
Subtract 99 from both sides of the equation.
2x2-12x=-92x2−12x=−9
2x2-12x=-92x2−12x=−9
Step 3
Step 3.1
Divide each term in 2x2-12x=-92x2−12x=−9 by 22.
2x22+-12x2=-922x22+−12x2=−92
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of 22.
Step 3.2.1.1.1
Cancel the common factor.
2x22+-12x2=-922x22+−12x2=−92
Step 3.2.1.1.2
Divide x2x2 by 11.
x2+-12x2=-92x2+−12x2=−92
x2+-12x2=-92x2+−12x2=−92
Step 3.2.1.2
Cancel the common factor of -12−12 and 22.
Step 3.2.1.2.1
Factor 22 out of -12x−12x.
x2+2(-6x)2=-92x2+2(−6x)2=−92
Step 3.2.1.2.2
Cancel the common factors.
Step 3.2.1.2.2.1
Factor 22 out of 22.
x2+2(-6x)2(1)=-92x2+2(−6x)2(1)=−92
Step 3.2.1.2.2.2
Cancel the common factor.
x2+2(-6x)2⋅1=-92x2+2(−6x)2⋅1=−92
Step 3.2.1.2.2.3
Rewrite the expression.
x2+-6x1=-92x2+−6x1=−92
Step 3.2.1.2.2.4
Divide -6x−6x by 11.
x2-6x=-92x2−6x=−92
x2-6x=-92x2−6x=−92
x2-6x=-92x2−6x=−92
x2-6x=-92x2−6x=−92
x2-6x=-92x2−6x=−92
Step 3.3
Simplify the right side.
Step 3.3.1
Move the negative in front of the fraction.
x2-6x=-92x2−6x=−92
x2-6x=-92x2−6x=−92
x2-6x=-92x2−6x=−92
Step 4
To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of bb.
(b2)2=(-3)2(b2)2=(−3)2
Step 5
Add the term to each side of the equation.
x2-6x+(-3)2=-92+(-3)2x2−6x+(−3)2=−92+(−3)2
Step 6
Step 6.1
Simplify the left side.
Step 6.1.1
Raise -3−3 to the power of 22.
x2-6x+9=-92+(-3)2x2−6x+9=−92+(−3)2
x2-6x+9=-92+(-3)2x2−6x+9=−92+(−3)2
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify -92+(-3)2−92+(−3)2.
Step 6.2.1.1
Raise -3−3 to the power of 22.
x2-6x+9=-92+9x2−6x+9=−92+9
Step 6.2.1.2
To write 99 as a fraction with a common denominator, multiply by 2222.
x2-6x+9=-92+9⋅22x2−6x+9=−92+9⋅22
Step 6.2.1.3
Combine 99 and 2222.
x2-6x+9=-92+9⋅22
Step 6.2.1.4
Combine the numerators over the common denominator.
x2-6x+9=-9+9⋅22
Step 6.2.1.5
Simplify the numerator.
Step 6.2.1.5.1
Multiply 9 by 2.
x2-6x+9=-9+182
Step 6.2.1.5.2
Add -9 and 18.
x2-6x+9=92
x2-6x+9=92
x2-6x+9=92
x2-6x+9=92
x2-6x+9=92
Step 7
Factor the perfect trinomial square into (x-3)2.
(x-3)2=92
Step 8
Step 8.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x-3=±√92
Step 8.2
Simplify ±√92.
Step 8.2.1
Rewrite √92 as √9√2.
x-3=±√9√2
Step 8.2.2
Simplify the numerator.
Step 8.2.2.1
Rewrite 9 as 32.
x-3=±√32√2
Step 8.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
x-3=±3√2
x-3=±3√2
Step 8.2.3
Multiply 3√2 by √2√2.
x-3=±3√2⋅√2√2
Step 8.2.4
Combine and simplify the denominator.
Step 8.2.4.1
Multiply 3√2 by √2√2.
x-3=±3√2√2√2
Step 8.2.4.2
Raise √2 to the power of 1.
x-3=±3√2√21√2
Step 8.2.4.3
Raise √2 to the power of 1.
x-3=±3√2√21√21
Step 8.2.4.4
Use the power rule aman=am+n to combine exponents.
x-3=±3√2√21+1
Step 8.2.4.5
Add 1 and 1.
x-3=±3√2√22
Step 8.2.4.6
Rewrite √22 as 2.
Step 8.2.4.6.1
Use n√ax=axn to rewrite √2 as 212.
x-3=±3√2(212)2
Step 8.2.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x-3=±3√2212⋅2
Step 8.2.4.6.3
Combine 12 and 2.
x-3=±3√2222
Step 8.2.4.6.4
Cancel the common factor of 2.
Step 8.2.4.6.4.1
Cancel the common factor.
x-3=±3√2222
Step 8.2.4.6.4.2
Rewrite the expression.
x-3=±3√221
x-3=±3√221
Step 8.2.4.6.5
Evaluate the exponent.
x-3=±3√22
x-3=±3√22
x-3=±3√22
x-3=±3√22
Step 8.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 8.3.1
First, use the positive value of the ± to find the first solution.
x-3=3√22
Step 8.3.2
Add 3 to both sides of the equation.
x=3√22+3
Step 8.3.3
Next, use the negative value of the ± to find the second solution.
x-3=-3√22
Step 8.3.4
Add 3 to both sides of the equation.
x=-3√22+3
Step 8.3.5
The complete solution is the result of both the positive and negative portions of the solution.
x=3√22+3,-3√22+3
x=3√22+3,-3√22+3
x=3√22+3,-3√22+3
Step 9
The result can be shown in multiple forms.
Exact Form:
x=3√22+3,-3√22+3
Decimal Form:
x=5.12132034…,0.87867965…