Examples

S([abc])=[a-b-ca-b+ca+b+5c]
Step 1
The transformation defines a map from 3 to 3. To prove the transformation is linear, the transformation must preserve scalar multiplication, addition, and the zero vector.
S: 33
Step 2
First prove the transform preserves this property.
S(x+y)=S(x)+S(y)
Step 3
Set up two matrices to test the addition property is preserved for S.
S([x1x2x3]+[y1y2y3])
Step 4
Add the two matrices.
S[x1+y1x2+y2x3+y3]
Step 5
Apply the transformation to the vector.
S(x+y)=[x1+y1-(x2+y2)-(x3+y3)x1+y1-(x2+y2)+x3+y3x1+y1+x2+y2+5(x3+y3)]
Step 6
Simplify each element in the matrix.
Tap for more steps...
Step 6.1
Rearrange x1+y1-(x2+y2)-(x3+y3).
S(x+y)=[x1-x2-x3+y1-y2-y3x1+y1-(x2+y2)+x3+y3x1+y1+x2+y2+5(x3+y3)]
Step 6.2
Rearrange x1+y1-(x2+y2)+x3+y3.
S(x+y)=[x1-x2-x3+y1-y2-y3x1-x2+x3+y1-y2+y3x1+y1+x2+y2+5(x3+y3)]
Step 6.3
Rearrange x1+y1+x2+y2+5(x3+y3).
S(x+y)=[x1-x2-x3+y1-y2-y3x1-x2+x3+y1-y2+y3x1+x2+5x3+y1+y2+5y3]
S(x+y)=[x1-x2-x3+y1-y2-y3x1-x2+x3+y1-y2+y3x1+x2+5x3+y1+y2+5y3]
Step 7
Break the result into two matrices by grouping the variables.
S(x+y)=[x1-x2-x3x1-x2+x3x1+x2+5x3]+[y1-y2-y3y1-y2+y3y1+y2+5y3]
Step 8
The addition property of the transformation holds true.
S(x+y)=S(x)+S(y)
Step 9
For a transformation to be linear, it must maintain scalar multiplication.
S(px)=T(p[abc])
Step 10
Factor the p from each element.
Tap for more steps...
Step 10.1
Multiply p by each element in the matrix.
S(px)=S([papbpc])
Step 10.2
Apply the transformation to the vector.
S(px)=[(pa)-(pb)-(pc)(pa)-(pb)+pcpa+pb+5(pc)]
Step 10.3
Simplify each element in the matrix.
Tap for more steps...
Step 10.3.1
Rearrange (pa)-(pb)-(pc).
S(px)=[ap-1bp-1cp(pa)-(pb)+pcpa+pb+5(pc)]
Step 10.3.2
Rearrange (pa)-(pb)+pc.
S(px)=[ap-1bp-1cpap-1bp+cppa+pb+5(pc)]
Step 10.3.3
Rearrange pa+pb+5(pc).
S(px)=[ap-1bp-1cpap-1bp+cpap+bp+5cp]
S(px)=[ap-1bp-1cpap-1bp+cpap+bp+5cp]
Step 10.4
Factor each element of the matrix.
Tap for more steps...
Step 10.4.1
Factor element 0,0 by multiplying ap-1bp-1cp.
S(px)=[p(a-b-c)ap-1bp+cpap+bp+5cp]
Step 10.4.2
Factor element 1,0 by multiplying ap-1bp+cp.
S(px)=[p(a-b-c)p(a-b+c)ap+bp+5cp]
Step 10.4.3
Factor element 2,0 by multiplying ap+bp+5cp.
S(px)=[p(a-b-c)p(a-b+c)p(a+b+5c)]
S(px)=[p(a-b-c)p(a-b+c)p(a+b+5c)]
S(px)=[p(a-b-c)p(a-b+c)p(a+b+5c)]
Step 11
The second property of linear transformations is preserved in this transformation.
S(p[abc])=pS(x)
Step 12
For the transformation to be linear, the zero vector must be preserved.
S(0)=0
Step 13
Apply the transformation to the vector.
S(0)=[(0)-(0)-(0)(0)-(0)+00+0+5(0)]
Step 14
Simplify each element in the matrix.
Tap for more steps...
Step 14.1
Rearrange (0)-(0)-(0).
S(0)=[0(0)-(0)+00+0+5(0)]
Step 14.2
Rearrange (0)-(0)+0.
S(0)=[000+0+5(0)]
Step 14.3
Rearrange 0+0+5(0).
S(0)=[000]
S(0)=[000]
Step 15
The zero vector is preserved by the transformation.
S(0)=0
Step 16
Since all three properties of linear transformations are not met, this is not a linear transformation.
Linear Transformation
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]