Examples
y=x3+9x2+27x+27y=x3+9x2+27x+27
Step 1
Set x3+9x2+27x+27x3+9x2+27x+27 equal to 00.
x3+9x2+27x+27=0x3+9x2+27x+27=0
Step 2
Step 2.1
Factor the left side of the equation.
Step 2.1.1
Regroup terms.
x3+27+9x2+27x=0x3+27+9x2+27x=0
Step 2.1.2
Rewrite 2727 as 3333.
x3+33+9x2+27x=0x3+33+9x2+27x=0
Step 2.1.3
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2)a3+b3=(a+b)(a2−ab+b2) where a=xa=x and b=3b=3.
(x+3)(x2-x⋅3+32)+9x2+27x=0(x+3)(x2−x⋅3+32)+9x2+27x=0
Step 2.1.4
Simplify.
Step 2.1.4.1
Multiply 33 by -1−1.
(x+3)(x2-3x+32)+9x2+27x=0(x+3)(x2−3x+32)+9x2+27x=0
Step 2.1.4.2
Raise 33 to the power of 22.
(x+3)(x2-3x+9)+9x2+27x=0(x+3)(x2−3x+9)+9x2+27x=0
(x+3)(x2-3x+9)+9x2+27x=0
Step 2.1.5
Factor 9x out of 9x2+27x.
Step 2.1.5.1
Factor 9x out of 9x2.
(x+3)(x2-3x+9)+9x(x)+27x=0
Step 2.1.5.2
Factor 9x out of 27x.
(x+3)(x2-3x+9)+9x(x)+9x(3)=0
Step 2.1.5.3
Factor 9x out of 9x(x)+9x(3).
(x+3)(x2-3x+9)+9x(x+3)=0
(x+3)(x2-3x+9)+9x(x+3)=0
Step 2.1.6
Factor x+3 out of (x+3)(x2-3x+9)+9x(x+3).
Step 2.1.6.1
Factor x+3 out of 9x(x+3).
(x+3)(x2-3x+9)+(x+3)(9x)=0
Step 2.1.6.2
Factor x+3 out of (x+3)(x2-3x+9)+(x+3)(9x).
(x+3)(x2-3x+9+9x)=0
(x+3)(x2-3x+9+9x)=0
Step 2.1.7
Add -3x and 9x.
(x+3)(x2+6x+9)=0
Step 2.1.8
Factor using the perfect square rule.
Step 2.1.8.1
Rewrite 9 as 32.
(x+3)(x2+6x+32)=0
Step 2.1.8.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
6x=2⋅x⋅3
Step 2.1.8.3
Rewrite the polynomial.
(x+3)(x2+2⋅x⋅3+32)=0
Step 2.1.8.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=x and b=3.
(x+3)(x+3)2=0
(x+3)(x+3)2=0
(x+3)(x+3)2=0
Step 2.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x+3=0
(x+3)2=0
Step 2.3
Set x+3 equal to 0 and solve for x.
Step 2.3.1
Set x+3 equal to 0.
x+3=0
Step 2.3.2
Subtract 3 from both sides of the equation.
x=-3
x=-3
Step 2.4
The final solution is all the values that make (x+3)(x+3)2=0 true. The multiplicity of a root is the number of times the root appears.
x=-3 (Multiplicity of 3)
x=-3 (Multiplicity of 3)
Step 3