Examples
f(x)=7x2+5x−4
Step 1
Step 1.1
Find f(−x) by substituting −x for all occurrence of x in f(x).
f(−x)=7(−x)2+5(−x)−4
Step 1.2
Simplify each term.
Step 1.2.1
Apply the product rule to −x.
f(−x)=7((−1)2x2)+5(−x)−4
Step 1.2.2
Raise −1 to the power of 2.
f(−x)=7(1x2)+5(−x)−4
Step 1.2.3
Multiply x2 by 1.
f(−x)=7x2+5(−x)−4
Step 1.2.4
Multiply −1 by 5.
f(−x)=7x2−5x−4
f(−x)=7x2−5x−4
f(−x)=7x2−5x−4
Step 2
Step 2.1
Check if f(−x)=f(x).
Step 2.2
Since 7x2−5x−4≠7x2+5x−4, the function is not even.
The function is not even
The function is not even
Step 3
Step 3.1
Find −f(x).
Step 3.1.1
Multiply 7x2+5x−4 by −1.
−f(x)=−(7x2+5x−4)
Step 3.1.2
Apply the distributive property.
−f(x)=−(7x2)−(5x)+4
Step 3.1.3
Simplify.
Step 3.1.3.1
Multiply 7 by −1.
−f(x)=−7x2−(5x)+4
Step 3.1.3.2
Multiply 5 by −1.
−f(x)=−7x2−5x+4
Step 3.1.3.3
Multiply −1 by −4.
−f(x)=−7x2−5x+4
−f(x)=−7x2−5x+4
−f(x)=−7x2−5x+4
Step 3.2
Since 7x2−5x−4≠−7x2−5x+4, the function is not odd.
The function is not odd
The function is not odd
Step 4
The function is neither odd nor even
Step 5