Examples

Determine if Odd, Even, or Neither
f(x)=7x2+5x4
Step 1
Find f(x).
Tap for more steps...
Step 1.1
Find f(x) by substituting x for all occurrence of x in f(x).
f(x)=7(x)2+5(x)4
Step 1.2
Simplify each term.
Tap for more steps...
Step 1.2.1
Apply the product rule to x.
f(x)=7((1)2x2)+5(x)4
Step 1.2.2
Raise 1 to the power of 2.
f(x)=7(1x2)+5(x)4
Step 1.2.3
Multiply x2 by 1.
f(x)=7x2+5(x)4
Step 1.2.4
Multiply 1 by 5.
f(x)=7x25x4
f(x)=7x25x4
f(x)=7x25x4
Step 2
A function is even if f(x)=f(x).
Tap for more steps...
Step 2.1
Check if f(x)=f(x).
Step 2.2
Since 7x25x47x2+5x4, the function is not even.
The function is not even
The function is not even
Step 3
A function is odd if f(x)=f(x).
Tap for more steps...
Step 3.1
Find f(x).
Tap for more steps...
Step 3.1.1
Multiply 7x2+5x4 by 1.
f(x)=(7x2+5x4)
Step 3.1.2
Apply the distributive property.
f(x)=(7x2)(5x)+4
Step 3.1.3
Simplify.
Tap for more steps...
Step 3.1.3.1
Multiply 7 by 1.
f(x)=7x2(5x)+4
Step 3.1.3.2
Multiply 5 by 1.
f(x)=7x25x+4
Step 3.1.3.3
Multiply 1 by 4.
f(x)=7x25x+4
f(x)=7x25x+4
f(x)=7x25x+4
Step 3.2
Since 7x25x47x25x+4, the function is not odd.
The function is not odd
The function is not odd
Step 4
The function is neither odd nor even
Step 5
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay